The human monitoring system has motivated the search for new technology, leading to the development of a self-powered strain sensor. We report on the stretchable and soft stretchy electrochemical harvester (SECH) bilayer for a binarized self-powered strain gauge in dynamic and static motion. The active surface area participating in the electrochemical reaction was enhanced after stretching the SECH in the electrolyte, leading to an increase in the electrochemical double-layer capacitance. A change in the capacitance induced a change in the electrical potential of the bilayer, generating electrical energy. The SECH overcomes several challenges of the previous mechano-electrochemical harvester: The harvester had high elasticity (50%), which satisfied the required strain during human motion. The harvester was highly soft (modulus of 5.8 MPa), 103 times lower than that of the previous harvester. The SECH can be applied to a self-powered strain gauge, capable of measuring stationary deformation and low-speed motion. The SECH created a system to examine the configuration of the human body, as demonstrated by the human monitoring sensor from five independent SECH assembled on the hand. Furthermore, the sensing information was simplified through the binarized signal. It can be used to assess the hand configuration for hand signals and sign language.
Batteries are used in all types of electronic devices from conventional to advanced devices. Currently, batteries are evolving in the direction of extremely personalized yarn− or textile−structured textronic systems. However, the absence of a protective layer on such batteries is a critical limitation to their practical use. In this study, we developed a wearable and washable MnO2−Zn textile battery that maintains its electrochemical capacity under various external environmental conditions through a vacuum−sealed packaging. The packaged textile battery was fabricated by vacuuming a polymer envelope containing the battery, followed by heat sealing with a vacuum packaging machine. The interior and exterior regions of the textile battery are completely separated by the packaging sheath to preclude leakage and intrusion of substances. The resulting packaged textile battery exhibits stable capacity retention performance under varying temperature and humidity; mechanical deformations due to bending, twisting, rubbing, and pressing; and several mechanical, chemical, and their combined washing cycles. On the basis of these demonstrations, we expect that our vacuum−packaged textile battery will offer new possibilities for practical and convenient use of textronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.