Polycomb group (PcG) proteins form conserved regulatory complexes that modify chromatin to repress the genes that are not required in a specific differentiation status [1]. In animals, the two best-characterized PcG complexes are PRC2 and PRC1, which respectively possess histone 3 lysine 27 (H3K27) trimethyltransferase [2-4] and histone 2A lysine 119 (H2AK119) E3 ubiquitin ligase activities [5-7]. In Arabidopsis, PRC2 activity is also required for the gene silencing mechanism [8]; however, the existence of PRC1 has been questioned, because plant genomes do not encode clear PRC1 components and H2A monoubiquitination has not been detected [6, 9]. Conversely, recent reports have unveiled the presence of homologs to PRC1 components that together with plant-specific proteins could be part of the long-sought PRC1-like complexes [10, 11]. Here we show that the PRC1 RING-finger homologs AtBMI1A and AtBMI1B are implicated in the repression of embryonic and stem cell regulators. Plants impaired in AtBMI1A and AtBMI1B show derepression of embryonic traits in somatic cells, displaying a phenotype similar to plants mutant in PRC2 components [12-14]. Our data demonstrate that the AtBMI1A/B proteins mediate H2A monoubiquitination in Arabidopsis and that this mark, together with PRC2-mediated H3K27 trimethylation, plays a key role in maintaining cell identity.
Plant B3-domain transcription factors have an important role in regulating seed development, in particular seed maturation and germination. Among the B3 factors, the AFL (ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], and LEAFY COTYLEDON2 [LEC2]) proteins activate the seed maturation program in a complex network, while the VAL (VP1/ABI3-LIKE) 1/2/3 proteins suppress AFL action in order to initiate germination and vegetative development through an as yet unknown mechanism. In addition, the AFL genes and LEAFY COTYLEDON1 (LEC1), referred as seed maturation genes, are epigenetically repressed after germination by the Polycomb group (PcG) machinery via its histone-modifying activities: the histone H3 lysine 27 trimethyltransferase activity of the PcG repressive complex 2 (PRC2) and the E3 H2A monoubiquitin ligase activity of the PRC1. Both histone modifications are required for the repression; however, the underlying mechanism is far from clear, because the localization and the role of H2Aub marks are still unknown. In this work, we demonstrate that VAL proteins and AtBMI1-mediated H2Aub initiate repression of seed maturation genes. After the initial off switch, the repression is maintained by PRC2-mediated H3K27me3. Our results indicate that the regulation of seed maturation genes does not follow the classic hierarchical model proposed for animal PcG-mediated repression, since the PRC1 activity is required for the H3K27me3 modification of these genes. Furthermore, we show different mechanisms to achieve PcG repression in plants, as the repression of genes involved in other processes has different requirements for H2Aub and H3K27me3 marking.
Polycomb group (PcG)-mediated gene silencing is a common developmental strategy used to maintain stably inherited repression of target genes and involves different protein complexes known as Polycomb-repressive complexes (PRCs). In animals, the two best-characterized PcG complexes are PRC1 and PRC2. In this report, we demonstrate that the plantspecific protein EMBRYONIC FLOWER1 (EMF1) functions in maintaining the repression of the flower homeotic gene AGAMOUS (AG) during vegetative development in Arabidopsis thaliana by acting in concert with the EMF2 complex, a putative equivalent of Drosophila melanogaster PRC2. We show that AG regulatory sequences are required for its ectopic expression in both emf1 and emf2 mutants and that EMF2 is required for trimethylation of histone 3 lysine 27 on the AG chromatin. We found that EMF1 interacts directly with AG and that this interaction depends on the presence of EMF2. Together with the finding of EMF1 interference with transcription in vitro, these results suggest that EMF1 enables transcriptional repression of AG after the action of the putative EMF2 complex. Our data indicate that EMF1 plays a PRC1-like role in the PcG-mediated floral repression mechanism.
The FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences. Gene expression patterns are in agreement with a role of VvFT and VvMFT as flowering promoters; while VvTFL1A, VvTFL1B and VvTFL1C could be associated with vegetative development and maintenance of meristem indetermination. Overexpression of VvFT in transgenic Arabidopsis plants generates early flowering phenotypes similar to those produced by FT supporting a role for this gene in flowering promotion. Overexpression of VvTFL1A does not affect flowering time but the determination of flower meristems, strongly altering inflorescence structure, which is consistent with the biological roles assigned to similar genes in other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.