To delineate the physiological effects of aging on basal levels and temporal patterns of neuroendocrine secretions, the 24-h profiles of cortisol, thyroid-stimulating hormone (TSH), melatonin, prolactin, and growth hormone (GH) levels were simultaneously obtained at frequent intervals in eight healthy, active elderly men, age 67-84 yr and in eight young male adults, age 20-27 yr. The study was preceded by an extended period of habituation to laboratory conditions, and sleep was polygraphically recorded. Mean cortisol levels in the elderly were normal, but the amplitude of the circadian rhythm was reduced. Circulating levels of daytime and nighttime levels of both TSH and GH were greatly diminished in old age. In contrast, prolactin and melatonin concentrations were decreased during the nighttime only. The circadian rises of cortisol, TSH, and melatonin occurred 1-1.5 h earlier in elderly subjects, and the distribution of rapid-eye-movement stages during sleep was similarly advanced, suggesting that circadian timekeeping is modified during normal senescence. Despite perturbations of sleep, sleep-related release of GH and prolactin occurred in all elderly men. Age-related decreases in hormonal levels were associated with a decrease in the amplitude, but not the frequency, of secretory pulses. These findings demonstrate that the normal process of aging involves alterations in the central mechanisms controlling the temporal organization of endocrine release in addition to a reduction of secretory outputs.
Since the 1970s, various automatic sleep spindles procedures have been implemented and presented in the literature. Unfortunately, their results are not easily comparable because the databases, the assessment methods and the terminologies employed are often radically different. In this study, we propose a systematic assessment method for any automatic sleep spindles detection algorithm. We apply this assessment method to our own automatic detection process in order to illustrate and legitimate its use. We obtain a global sensitivity of 70.20%, for a false positive proportion (relative to the total number of visually scored sleep spindles) of only 26.44% (False positive rate = 1.38% and specificity = 98.62%).
Plasma ACTH, cortisol, and GH concentrations were measured at 15-min intervals for 24 h in 11 men suffering from major depressive illness during an acute episode of depression and during clinical remission following antidepressant treatment with either electroconvulsive therapy or amitriptyline. Seven age-matched normal men also were studied. During the acute phase of the illness, the patients had abnormally short rapid eye movement sleep latencies, hypercortisolism, early timing of the nadirs of the ACTH-cortisol rhythms, and shorter nocturnal periods of quiescent cortisol secretion. GH was hypersecreted during wakefulness, and a major pulse occurred before, rather than after, sleep onset. After treatment, rapid eye movement sleep latencies were lengthened, and cortisol levels returned to normal due to a decrease in the magnitude of episodic pulses. Moreover, the timing of the circadian rhythms of ACTH and cortisol as well as the duration of the quiescent period of cortisol secretion were normalized. The amount of GH secreted during wakefulness decreased to normal values, with fewer significant GH pulses. The major elevation of GH secretion in the early part of the night occurred later than that during the depressive episode. These results demonstrate that a disorder of circadian rhythmicity characterizes acute episodes of major depressive illness and that this chronobiological abnormality as well as the hypersecretion of ACTH, cortisol, and GH are state rather than trait dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.