SummaryOxidative stress (OS) resulting from an imbalance between antioxidant defenses and the intracellular accumulation of reactive oxygen species (ROS) contributes to age-related memory deficits. While impaired synaptic plasticity in neuronal networks is thought to underlie cognitive deficits during aging, whether this process is targeted by OS and what the mechanisms involved are still remain open questions. In this study, we investigated the age-related effects of the reducing agent N-acetyl-L-cysteine (L-NAC) on the activation of the N-methyl-D-aspartate receptor (NMDA-R) by its co-agonist D-serine, because alterations in this mechanism contribute greatly to synaptic plasticity deficits in aged animals. Long-term dietary supplementation with L-NAC prevented oxidative damage in the hippocampus of aged rats. Electrophysiological recordings in the CA1 of hippocampal slices indicated that NMDA-R-mediated synaptic potentials and thetaburst-induced long-term potentiation (LTP) were depressed in aged animals, deficits that could be reversed by exogenous D-serine. Chronic treatment with L-NAC, but not acute application of the reducing agent, restored potent D-serine-dependent NMDA-R activation and LTP induction in aged rats. In addition, it is also revealed that the age-related decrease in D-serine levels and in the expression of the synthesizing enzyme serine racemase, which underlies the decrease in NMDA-R activation by the amino acid, was rescued by long-term dietary treatment with L-NAC. Our results indicate that protecting redox status in aged animals could prevent injury to the cellular mechanisms underlying cognitive aging, in part by maintaining potent NMDA-R activation through the D-serine-dependent pathway.
Background:Binge drinking is common in adolescents, but the impact of only a few binges on learning and memory appears underestimated. Many studies have tested the effects of long and intermittent ethanol exposure on long-term synaptic potentiation, and whether long-term synaptic depression is affected remains unknown.Methods:We studied the effects of one (3g/kg, i.p.; blood ethanol content of 197.5±19mg/dL) or 2 alcohol intoxications (given 9 hours apart) on adolescent rat’s memory and synaptic plasticity in hippocampus slice after different delay.Results:Animals treated with 2 ethanol intoxications 48 hours before training phase in the novel object recognition task failed during test phase. As learning is related to NMDA-dependent mechanisms, we tested ketamine and found the same effect as ethanol, whereas D-serine prevented learning deficit. In hippocampus slice, NMDA-dependent long-term synaptic depression was abolished 48 hours after ethanol or ketamine but prevented after D-serine or in a low-Mg2+ recording medium. Long-term synaptic depression abolition was not observed 8 days after treatment. An i.p. treatment with MK-801, tetrahydroisoxazolopyridine, or muscimol was ineffective, and long-term synaptic potentiation, intrinsic excitability, and glutamate release remained unaffected. The input/ouput curve for NMDA-fEPSPs was shifted to the left 48 hours after the binges with a stronger contribution of GluN2B subunit, leading to a leftward shift of the Bienenstock-Cooper-Munro relationship. Interestingly, there were no cellular effects after only one ethanol injection.Conclusion:Two ethanol “binges” in adolescent rats are sufficient to reversibly abolish long-term synaptic depression and to evoke cognitive deficits via a short-lasting, repeated blockade of NMDA receptors only, inducing a change in the receptor subunit composition. Furthermore, ethanol effects developed over a 48-hour period of abstinence, indicating an important role of intermittence during a repeated long-duration binge behavior.
Alzheimer's disease is characterized by the loss of memory and synaptic damage. Evidence is accumulating for a causal role of soluble oligomeric species of amyloid-β peptide (Aβo) in the impairment of synaptic plasticity and cognition but the precise mechanisms underlying these effects are still not clear. Synaptic plasticity such as long-term potentiation is thought to underlie learning and memory. While the effect of Aβ on long-term potentiation is well documented, a more general understanding of Aβ action on various aspects of plasticity involving synaptic and extrasynaptic receptors and the nature of the mechanisms involved in its effects are lacking. Using a combination of electrophysiological and biochemical techniques in mouse hippocampal slices, we show here that Aβo drastically affects synaptic plasticities induced by high stimulation frequencies through the involvement of extrasynaptic glutamate receptors. Experiments on hippocampal slices as well as on cultured cortical neurons show that Aβo potentiates extrasynaptic NMDA receptors-mediated responses. Pharmacological characterization indicates that GluN2B-containing NMDARs are involved in these responses. When synaptic and extrasynaptic glutamate receptor-mediated effects are dissociated using cortical neurons in culture, it appears that Aβo has differential effects on these two receptors types. We conclude that the pool of extrasynaptic GluN2B-containing NMDARs is a major target of Aβo in the hippocampus. During high frequency stimulation, Aβo dramatically impairs long-term neuronal responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.