Mice deficient in inducible nitric oxide synthase (iNOS) were generated to test the idea that iNOS defends the host against infectious agents and tumor cells at the risk of contributing to tissue damage and shock. iNOS-/-mice failed to restrain the replication of Listeria monocytogenes in vivo or lymphoma cells in vitro. Bacterial endotoxic lipopolysaccharide (LPS) caused shock and death in anesthetized wild-type mice, but in iNOS-/-mice, the fall in central arterial blood pressure was markedly attenuated and early death averted. However, unanesthetized iNOS-/-mice suffered as much LPS-induced liver damage as wild type, and when primed with Propionobacterium acnes and challenged with LPS, they succumbed at the same rate as wild type. Thus, there exist both iNOS-dependent and iNOS-independent routes to LPS-induced hypotension and death.
Genetic and pharmacological studies have defined a role for the melanocortin-4 receptor (Mc4r) in the regulation of energy homeostasis. The physiological function of Mc3r, a melanocortin receptor expressed at high levels in the hypothalamus, has remained unknown. We evaluated the potential role of Mc3r in energy homeostasis by studying Mc3r-deficient (Mc3r(-/-)) mice and compared the functions of Mc3r and Mc4r in mice deficient for both genes. The 4-6-month Mc3r-/- mice have increased fat mass, reduced lean mass and higher feed efficiency than wild-type littermates, despite being hypophagic and maintaining normal metabolic rates. (Feed efficiency is the ratio of weight gain to food intake.) Consistent with increased fat mass, Mc3r(-/-) mice are hyperleptinaemic and male Mc3r(-/-) mice develop mild hyperinsulinaemia. Mc3r(-/-) mice did not have significantly altered corticosterone or total thyroxine (T4) levels. Mice lacking both Mc3r and Mc4r become significantly heavier than Mc4r(-/-) mice. We conclude that Mc3r and Mc4r serve non-redundant roles in the regulation of energy homeostasis.
The adipose tissue-derived hormone adiponectin improves insulin sensitivity and its circulating levels are decreased in obesityinduced insulin resistance. Here, we report the generation of a mouse line with a genomic disruption of the adiponectin locus. We aimed to identify whether these mice develop insulin resistance and which are the primary target tissues affected in this model. Using euglycemic/insulin clamp studies, we demonstrate that these mice display severe hepatic but not peripheral insulin resistance. Furthermore, we wanted to test whether the lack of adiponectin magnifies the impairments of glucose homeostasis in the context of a dietary challenge. When exposed to high fat diet, adiponectin null mice rapidly develop glucose intolerance. Specific PPAR␥ agonists such as thiazolidinediones (TZDs) improve insulin sensitivity by mechanisms largely unknown. Circulating adiponectin levels are significantly up-regulated in vivo upon activation of PPAR␥. Both TZDs and adiponectin have been shown to activate AMP-activated protein kinase (AMPK) in the same target tissues. We wanted to address whether the ability of TZDs to improve glucose tolerance is dependent on adiponectin and whether this improvement involved AMPK activation. We demonstrate that the ability of PPAR␥ agonists to improve glucose tolerance in ob/ob mice lacking adiponectin is diminished. Adiponectin is required for the activation of AMPK upon TZD administration in both liver and muscle. In summary, adiponectin is an important contributor to PPAR␥-mediated improvements in glucose tolerance through mechanisms that involve the activation of the AMPK pathway.Adiponectin/ACRP30 (adipocyte complement-related protein of 30 kDa), an adipocyte-specific secretory protein, has been shown to modulate insulin sensitivity; however, the mechanism(s) by which it acts are not fully understood (1). A number of clinical studies revealed a strong link between whole body insulin sensitivity and circulating adiponectin levels (2). Furthermore, circulating adiponectin is negatively correlated with the body mass index (3). Weight reduction leads to a significant increase in adiponectin plasma levels slightly preceding improvements in insulin sensitivity, thus suggesting a causative role of adiponectin in enhancing insulin sensitivity (4). Adiponectin null mouse models were described previously, however, with somewhat varying outcomes regarding their metabolic phenotype. Kubota et al. (5) noted mild insulin resistance under basal conditions in heterozygotes (60% reduction in adiponectin serum levels) and more severe insulin resistance in adiponectin null animals. This report differed from adiponectin null mice described by Maeda et al. (6) that showed nearly normal insulin sensitivity when fed on a standard laboratory diet but developed severe insulin resistance in as few as 2 weeks on a high fat/high sucrose diet. However, a third independent report of adiponectin null mice by Ma et al. (7) described an unexpected increase in fatty acid oxidation in skeletal muscle...
A DNA fragment containing the promoter of the mouse metallothionein-I gene fused to the structural gene of rat growth hormone was microinjected into the pronuclei of fertilized mouse eggs. Of 21 mice that developed from these eggs, seven carried the fusion gene and six of these grew significantly larger than their littermates. Several of these transgenic mice had extraordinarily high levels of the fusion mRNA in their liver and growth hormone in their serum. This approach has implications for studying the biological effects of growth hormone, as a way to accelerate animal growth, as a model for gigantism, as a means of correcting genetic disease, and as a method of farming valuable gene products.
Microinjection of foreign DNA into fertilized mammalian eggs is a convenient means of introducing genes into the germ line. Some ofthe more important parameters that influence successful integration of foreign DNA into mouse chromosomes are described. The effects of DNA concentration, size, and form (supercoiled vs. linear with a variety of different ends) are considered as well as the site of injection (male pronucleus, female pronucleus, or cytoplasm) and buffer composition. The optimal conditions for integration entail injection of a few hundred linear molecules into the male pronucleus of fertilized one-cell eggs. Under these conditions about 25% of the mice that develop inherit one or more copies of the microinjected DNA. The overall efficiency also depends on the choice of mouse strains; for example, generating transgenic mice that express foreign growth hormone genes is about eight times easier with C57/BL6 x SJL hybrid mice than with inbred C57/BL6 mice.A number of investigators have successfully introduced foreign DNA into somatic tissues and the germ line of mice by microinjecting DNA into fertilized eggs (1)(2)(3)(4)(5)(6) (10). Our experience is that mosaic mice and mice with more than one integration site each represent 10-20% of nearly a hundred transgenic mice that we have analyzed by outbreeding. For most of the analyses described here, we do not distinguish mosaics and multiple integration sites because they are most easily detected by breeding experiments (unpublished data).In the analysis described here, we consider the influence of the number of DNA molecules injected, the form and size of the DNA, injection buffer, and the site of injection on the frequency of integration. Overall efficiency entails more than achieving a high percentage of positive fetuses. It must also include factors such as ease of obtaining fertilized eggs, ease of microinjection, survival of the eggs after microinjection, ability of the eggs to continue development after microinjection, and ability of the eggs to continue development after transfer to pseudopregnant recipients. These factors become important when considering adapting these conditions to other strains of mice or species. METHODSPreparation of DNA for Microinjection. All of the genes were propagated as plasmids or cosmids in Escherichia coli. Supercoiled molecules were isolated from bacterial cultures by standard techniques involving either lysozyme/Triton X-100 lysis or lysozyme/alkaline lysis followed by banding the supercoiled plasmids on ethidium bromine/CsCl gradients (11). Linear DNA molecules were prepared by digestion with restriction enzymes; after digestion the DNA was extracted with NaDodSO4/phenol/chloroform, precipitated with ethanol, washed thoroughly with ethanol/salt, and then dissolved in TE buffer (10 mM Tris HCl/0.25 mM EDTA, pH 7.5). When more than one fragment was generated, the fragments were generally separated by agarose gel electrophoresis and visualized by UV after staining with ethidium bromide and recovered by binding t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.