We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer k-planar graphs, where each edge is crossed by at most k other edges; and, outer k-quasi-planar graphs where no k edges can mutually cross. We show that the outer k-planar graphs are ( √ 4k + 1 + 1)-degenerate, and consequently that every outer k-planar graph can be ( √ 4k + 1 +2)colored, and this bound is tight. We further show that every outer kplanar graph has a balanced separator of size at most 2k + 3. For each fixed k, these small balanced separators allow us to test outer k-planarity in quasi-polynomial time, i.e., none of these recognition problems are NP-hard unless ETH fails. For the outer k-quasi-planar graphs we discuss the edge-maximal graphs which have been considered previously under different names. We also construct planar 3-trees that are not outer 3-quasi-planar. Finally, we restrict outer k-planar and outer k-quasi-planar drawings to closed drawings, where the vertex sequence on the boundary is a cycle in the graph. For each k, we express closed outer k-planarity and closed outer k-quasi-planarity in extended monadic second-order logic. Thus, since outer k-planar graphs have bounded treewidth, closed outer k-planarity is linear-time testable by Courcelle's Theorem.
In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a linear number of faces. This implies that orthogonal circle intersection graphs have only a linear number of edges. When we restrict ourselves to orthogonal unit circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact graphs of unit circles). We show that, similarly to penny graphs, it is NPhard to recognize orthogonal unit circle intersection graphs.
An effective way to reduce clutter in a graph drawing that has (many) crossings is to group edges that travel in parallel into bundles. Each edge can participate in many such bundles. Any crossing in this bundled graph occurs between two bundles, i.e., as a bundled crossing. We consider the problem of bundled crossing minimization: A graph is given and the goal is to find a bundled drawing with at most k bundled crossings. We show that the problem is NP-hard when we require a simple drawing. Our main result is an FPT algorithm (in k) when we require a simple circular layout. These results make use of the connection between bundled crossings and graph genus.
Abstract. Given a drawing of a graph, its visual complexity is defined as the number of geometrical entities in the drawing, for example, the number of segments in a straight-line drawing or the number of arcs in a circular-arc drawing (in 2D). Recently, Chaplick et al. [4] introduced a different measure for the visual complexity, the affine cover number, which is the minimum number of lines (or planes) that together cover a crossing-free straight-line drawing of a graph G in 2D (3D). In this paper, we introduce the spherical cover number, which is the minimum number of circles (or spheres) that together cover a crossing-free circulararc drawing in 2D (or 3D). It turns out that spherical covers are sometimes significantly smaller than affine covers. Moreover, there are highly symmetric graphs that have symmetric optimum spherical covers but apparently no symmetric optimum affine cover. For complete, complete bipartite, and platonic graphs, we analyze their spherical cover numbers and compare them to their affine cover numbers as well as their segment and arc numbers. We also link the spherical cover number to other graph parameters such as chromatic number, treewidth, and linear arboricity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.