In May 2019, Collection 2 of the Copernicus Global Land Cover layers was released. Next to a global discrete land cover map at 100 m resolution, a set of cover fraction layers is provided depicting the percentual cover of the main land cover types in a pixel. This additional continuous classification scheme represents areas of heterogeneous land cover better than the standard discrete classification scheme. Overall, 20 layers are provided which allow customization of land cover maps to specific user needs or applications (e.g., forest monitoring, crop monitoring, biodiversity and conservation, climate modeling, etc.). However, Collection 2 was not just a global up-scaling, but also includes major improvements in the map quality, reaching around 80% or more overall accuracy. The processing system went into operational status allowing annual updates on a global scale with an additional implemented training and validation data collection system. In this paper, we provide an overview of the major changes in the production of the land cover maps, that have led to this increased accuracy, including aligning with the Sentinel 2 satellite system in the grid and coordinate system, improving the metric extraction, adding better auxiliary data, improving the biome delineations, as well as enhancing the expert rules. An independent validation exercise confirmed the improved classification results. In addition to the methodological improvements, this paper also provides an overview of where the different resources can be found, including access channels to the product layer as well as the detailed peer-review product documentation.
To meet the ambitious objectives of biodiversity and climate conventions, countries and the international community require clarity on how these objectives can be operationalized spatially, and multiple targets be pursued concurrently 1 . To support governments and political conventions, spatial guidance is needed to identify which areas should be managed for conservation to generate the greatest synergies between biodiversity and nature's contribution to people (NCP). Here we present results from a joint optimization that maximizes improvements in species conservation status, carbon retention and water provisioning and rank terrestrial conservation priorities globally. We found that, selecting the top-ranked 30% (respectively 50%) of areas would conserve 62.4% (86.8%) of the estimated total carbon stock and 67.8% (90.7%) of all clean water provisioning, in addition to improving the conservation status for 69.7% (83.8%) of all species considered. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to improve the conservation status of 86.3% of plant and vertebrate species on Earth. Our results provide a global baseline on where land could be managed for conservation. We discuss how such a spatial prioritisation framework can support the implementation of the biodiversity and climate conventions.
Land cover is of fundamental importance to many environmental applications and serves as critical baseline information for many large scale models e.g. in developing future scenarios of land use and climate change. Although there is an ongoing movement towards the development of higher resolution global land cover maps, medium resolution land cover products (e.g. GLC2000 and MODIS) are still very useful for modelling and assessment purposes. However, the current land cover products are not accurate enough for many applications so we need to develop approaches that can take existing land covers maps and produce a better overall product in a hybrid approach. This paper uses geographically weighted regression (GWR) and crowdsourced validation data from Geo-Wiki to create two hybrid global land cover maps that use medium resolution land cover products as an input.Two different methods were used: a) the GWR was used to determine the best land cover product at each location; b) the GWR was only used to determine the best land cover at those locations where all three land cover maps disagree, using the agreement of the land cover maps to determine land cover at the other cells. The results show that the hybrid land cover map developed using the first method resulted in a lower overall disagreement than the individual global land cover maps. The hybrid map produced by the second method was also better when compared to the GLC2000 and GlobCover but worse or similar in performance to the MODIS land cover product depending upon the metrics considered. The reason for this may be due to the use of the GLC2000 in the development of GlobCover, which may have resulted in areas where both maps agree with one another but not with MODIS, and where MODIS may in fact better represent land cover in those situations. These results serve to demonstrate that spatial analysis methods can be used to improve medium resolution global land cover information with existing products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.