Oxidized low-density lipoprotein (oxLDL) plays a key role in the inflammatory processes of atherosclerosis. Jaceosidin isolated from the methanolic extracts of the aerial parts of Artemisia princeps Pampanini cv. Sajabal was tested for antioxidant and anti-inflammatory activities. Jaceosidin inhibited the Cu(2+)-mediated LDL oxidation with IC(50) values of 10.2 microM in the thiobarbituric acid-reactive substances (TBARS) assay as well as the macrophage-mediated LDL oxidation. The antioxidant activities of jaceosidin were exhibited in the conjugated diene production, relative electrophoretic mobility, and apoB-100 fragmentation on copper-mediated LDL oxidation. Jaceosidin also inhibited the generation of reactive oxygen species (ROS) concerning in regulation of NF-kappaB signaling. And jaceosidin inhibited nuclear factor-kappa B (NF-kappaB) activity, nitric oxide (NO) production, and suppressed expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages.
Angiogenesis, the growth of new blood vessels from pre-existing vasculature, plays an important role in physiological and pathological processes such as embryonic development wound healing and revascularization of tissues after exposure to ischemia. We investigated the effects of jaceosidin, a main constituent of medicinal herbs of the genus Artemisia, on angiogenesis and signaling pathways in endothelial cells. Jaceosidin stimulated proliferation, migration and tubulogenesis of ECs as well as ex vivo sprouting from aorta rings, which are phenomena typical of angiogenesis. Jaceosidin activated vascular endothelial growth factor receptor 2 (VEGFR2, FLk-1/KDR) and angiogenic signaling molecules such as focal adhesion kinase, phosphatidylinositol 3-kinase, and its downstream target, the serine-threonine kinase AKTWe also demonstrated that jaceosidin activated the NF-κB-driven expression of a luciferase reporter gene and NF-κB binding to DNA. Jaceosidin-induced proliferation and migration of human umbilical vascular endothelial cells were strongly inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002 and NF-κB inhibitor BAY11-7082, indicating that the PI3K/AKT/NF-κB signaling pathway is involved in jaceosidin-induced angiogenesis. Our results suggest that jaceosidin stimulates angiogenesis by activating the VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathway and that it may be useful in developing angiogenic agents to promote the growth of collateral blood vessels in ischemic tissues.
Stewartia koreana (S. koreana) has been used in the treatment of inflammatory diseases, such as acute gastroenteritis and aches, in Korean folk medicine and has been reported to have a number of biological activities, such as anti-inflammatory activity and the promotion of angiogenesis. In this study, we aimed to determine the effects of S. koreana extract (SKE) and its components on dermal fibroblast growth and migration, and to investigate the wound healing activity of the extract in mice. In vitro experiments revealed that the numbers of SKE-treated cells increased by approximately 2.5-‑ and 3.7-fold with 50 and 100 µg/ml of SKE, respectively. 5-bromo-2'-deoxy-uridine (BrdU) incorporation was also increased in the SKE-treated cells by 2.3-fold. SKE promoted the migration of human skin fibroblasts and, among the isolated compounds, hyperin increased the proliferation and migration of the fibroblasts to almost the same degree as SKE. Western blot analysis demonstrated that SKE stimulated the MEK/ERK1/2 and PI3K/Akt signaling pathways. In in vivo experiments, the SKE-treated wound lesions of mice decreased by approximately 7% in diameter after 2 days of treatment with SKE compared with the wound lesions on the 1st day of the experiment. On the 9th day of treatment, the diameter of the lesions was further reduced by approximately 83% in the SKE-treated wound areas compared with the wound areas on the 1st day of treatment. Our results demonstrate that methanol extracts of S. koreana leaves promote the proliferation and migration of skin fibroblasts and possess effective wound healing activity through the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways. Hyperin was identified as an active compound responsible for the stimulation of fibroblast growth and migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.