Purpose A number of publications have raised trace metal contamination of soils and sediments within and around shooting ranges used for sport or military training. To our knowledge, however, there is no publication on the contamination of sediments derived from military shooting ranges in a marine environment. Therefore, this work was purposed to assess the dispersion and fractionation of ammunition-and bomb-derived trace metals in intertidal sediment. Materials and methods Intertidal sediments (n=32) were collected around a small island that has been used as a target for military air weapons shooting training for more than 50 years in the west coast area of South Korea and were analyzed for size distribution, pH, organic/inorganic carbon contents, and trace metals concentrations. Three kinds of the chemical extraction were used for trace metals analysis: 1) total extraction with a 4:4:1 mixture of HF-HNO 3 -HClO 4 acid, 2) partial extraction with 0.1 N HCl, and 3) sequential extraction by a modified Community Bureau of Reference (BCR) method. We also compared our total concentration data with values reported for shallow marine sediments off South Korea and worldwide. Principal component analysis (PCA) was also used to identify shooting-related anthropogenic inputs for some trace metals. Results and discussion Ranges of total trace metals concentrations (mg kg −1 ) are: Cd, 0.5-3.
The interaction parameters of alloying elements on nitrogen in liquid Fe-Cr alloys containing niobium have been determined. The equilibrium nitrogen solubility in the liquid iron alloy was measured by metal-gas equilibrium technique under 0.04 to 1.0 atm of nitrogen atmosphere at 1 823 to 1 923K. Nitrogen solubility in Fe-Cr-Nb melts obeyed Sieverts' law for all compositions studied in present study.The results obtained are summarized as follows;(1) The solubility of nitrogen markedly increased with increasing chromium and niobium. The interaction parameters in liquid iron alloys containing 10-18 % of Cr and 0.2-2 % of Nb are obtained. (2) The solubility of nitrogen was lower at a higher temperature in Fe-Cr melts in this study. (3) Test results indicated that it is not likely to form niobium nitride in Fe-Cr-Nb-N alloys and it was confirmed by EDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.