Background: Because amyotrophic lateral sclerosis (ALS) is a progressive inflammatory disease, treatment of the pulmonary system plays a key role in ALS patients’ care. Previous studies have mainly examined the pathological mechanism of ALS in the central nervous system; however, there has been relatively little research regarding the pulmonary system in ALS animal models. In inflammatory diseases, including asthma and arthritis, electroacupuncture (EA) is commonly used for its anti-inflammatory effects. The goal of this study was to determine whether EA treatment affects inflammation in the pulmonary system in an ALS animal model. Methods: EA treatment at ST36 (Zusanli) acupoint was performed with 14-week-old hSOD1G93A transgenic mice. Immunohistochemical analysis was performed using anti-ionized calcium binding adaptor molecule 1 (Iba-1) and anti-tumor necrosis factor alpha (TNF-α) antibodies. To investigate the expression level of inflammatory proteins, Western blot analyses were performed using anti-Iba-1, anti-TNF-α, anti-nuclear factor kappa B (NF-ĸB), and anti-interleukin 6 (IL-6) antibodies. The activation of Ser435-phospho-specific RAC-alpha serine/threonine-protein kinase 1 (pAKT) and the increase of phosphorylated extracellular-signal-regulated kinases (pERK) protein in lung tissues of EA-treated and untreated hSOD1G93A mice were also evaluated by Western blot. Results: EA treatment decreased the expression of the proinflammatory proteins such as TNF-α and IL-6, pNF-ĸB, and Iba-1 and increased the level of activated pAKT and pERK compared to control hSOD1G93A mice. Conclusions: Our findings suggest that EA could be an effective anti-inflammatory treatment for the respiratory impairment that occurs in ALS animal models.
Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38) following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.