Substrate specificities of FPG protein (also known as formamidopyrimidine DNA glycosylase) and 8-hydroxyguanine endonuclease were compared by using defined duplex oligodeoxynucleotides containing single residues of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA), and 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine (Me-Fapy). Duplexes containing 8-oxodG positioned opposite dC, dG, or dT were cleaved, whereas single-stranded DNA and duplexes containing 8-oxodGdA or 8-oxodA positioned opposite any of the four DNA bases were relatively resistant. Both enzymes cut duplexes containing 8-oxoG-dC 3' and 5' to the modified base but failed to cleave duplex DNA containing synthetic abasic sites, mismatches containing dG, or unmodified DNA. 8-Oxoguanine, identified by HPLC-electrochemical detection techniques, was released during the enzymatic reaction. Apparent Km values for FPG protein acting on duplex substrates containing a single Me-Fapy or 8-oxodG residue positioned opposite dC were 41 and 8 nM, respectively, and those for 8-hydroxyguanine endonuclease were 30 and 13 nM, respectively. Comparison of the properties of the two enzyme activities suggest that they are identical. In view of the widespread distribution of 8-oxodG in cellular DNA, the demonstrated miscoding and mutagenic properties of this lesion, and the existence of a bacterial gene coding for FPG protein, we propose that 8-oxodG DNA is the primary physiological substrate for a constituent glycosylase found in bacteria and mammalian cells.Active oxygen species, generated by ionizing radiation and by endogenous oxidation processes, react with deoxyguanosine (dG) residues in DNA to form 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) (reviewed in ref.
Aberrantly enhanced vascular endothelial growth factor (VEGF) gene expression is associated with increased tumor growth and metastatic spread of solid malignancies, including human renal carcinomas. Persistent activation of STAT3 is linked to tumor-associated angiogenesis, but underlying mechanisms remain unclear. Therefore, we examined whether STAT3 modulates the stability and activity of hypoxia-inducible factor-1alpha (HIF-1alpha), and in turn enhances VEGF expression. We found that STAT3 was activated in ischemic rat kidneys and hypoxic human renal carcinoma cells. We also found that hypoxia-induced activation of STAT3 transactivated the VEGF promoter and increased the expression of VEGF transcripts. Consistent with these findings, STAT3 inhibition attenuated the hypoxic induction of VEGF. Interestingly, activated STAT3 increased HIF-1alpha protein levels due to the HIF-1alpha stability by blocking HIF-1alpha degradation and accelerated its de novo synthesis. The novel interaction of STAT3 with HIF-1alpha was identified in hypoxic renal carcinoma cells. Furthermore, hypoxia recruited STAT3, HIF-1alpha, and p300 to the VEGF promoter and induced histone H3 acetylation. Therefore, these findings provide compelling evidence that a causal relationship exists between STAT3 activation and HIF-1-dependent angiogenesis and suggest that therapeutic modalities designed to disrupt STAT3 signaling hold considerable promise for the blocking tumor growth and enhancing apoptosis of cancer cells and tissues.
Tumor angiogenesis is required for tumor development and is stimulated by angiogenic inducers like VEGF (vascular endothelial growth factor). Our previous study demonstrated that STAT3 (signal transducer and activator of transcription 3) up-regulates HIF-1alpha (hypoxia inducible factor-1alpha) protein stability and enhances HIF-1-mediated VEGF expression in hypoxic solid tumor cells, thus suggesting that the inhibition of STAT3 signaling may have clinical applications. In this study, we examined in vitro and in vivo, whether caffeic acid (CA) or its derivative CADPE [3-(3,4-dihydroxy-phenyl)-acrylic acid 2-(3,4-dihydroxy-phenyl)-ethyl ester] exert anticancer activity by targeting STAT3. It was found that CA or CADPE significantly inhibit STAT3 activity, and that this in turn down-regulates HIF-1alpha activity. Consequently, sequential blockade of STAT3 and HIF-1alpha resulted in the down-regulation of VEGF by inhibiting their recruitment to the VEGF promoter. In mice bearing a Caki-I carcinoma, both CA and CADPE retarded tumor growth and suppressed STAT3 phosphorylation, HIF-1alpha expression, vascularization and STAT3-inducible VEGF gene expression in tumors. Taken together, our results demonstrate that CA and CADPE are potential inhibitors of STAT3 and that they suppress tumor angiogenesis by inhibiting the activity of STAT3, the expression of HIF-1alpha and VEGF.
Active oxygen species (AOS) such as O2- and H2O2 have been shown to be generated from both gas and tar phases of cigarette smoke and it has been suggested that they are involved in carcinogenesis due to cigarette smoking. Therefore, we investigated the effect of cigarette smoking on oxidative DNA damages in human peripheral blood cells using 8-hydroxydeoxy-guanosine (8-OH-dG) as a marker. From ten healthy male volunteers aged 20-22 years, 5 ml of blood was taken before and 10 minutes after smoking 2 cigarettes in 10 minutes. After lysis of blood cell membranes leukocyte DNA was isolated using a DNA extractor and 8-OH-dG levels were determined using high performance liquid chromatography (HPLC) with electrochemical detection. The mean levels of 8-OH-dG increased significantly (P less than 0.05) from 3.3 +/- 0.8/10(6) dG (mean +/- SD) to 5.1 +/- 2.5 after smoking. These results indicate that cigarette smoking induces oxidative DNA damage in peripheral blood cells in a relatively short time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.