a b s t r a c tIn this article, we present the numerical simulations of a real cylinder head quench cooling process employing a newly developed boiling phase change model using the commercial CFD code AVL-FIRE v8.5. Separate computational domains constructed for the solid and liquid regions are numerically coupled at the interface of the solid-liquid boundaries using the AVL-Code-Coupling-Interface (ACCI) feature. The boiling phase change process triggered by the dipping hot metal and the ensuing two-phase flow is handled using an Eulerian two-fluid method. Multitude of flow features such as vapor pocket generation, bubble clustering and their disposition, are captured very effectively during the computation, in addition to the variation of the temperature pattern within the solid region. A comparison of the registered temperature readings at different monitoring locations with the numerical results generates an overall very good agreement and indicates the presence of intense non-uniformity in the temperature distribution within the solid. Overall, the predictive capability of the new boiling model is well demonstrated for real-time quenching applications.
In this article, we describe a newly developed modeling procedure to simulate the immersion quench cooling process using the commercial code AVL-FIRE. The boiling phase change process, triggered by the dipping hot solid part into a subcooled liquid bath and the ensuing two-phase flow is handled using an Eulerian two-fluid method. Mass transfer effects are modeled based on different boiling modes such as film or nucleate boiling regime prevalent in the system. Separate computational domains constructed for the quenched solid part and the liquid (quenchant) domain are numerically coupled at the interface of the solid-liquid boundaries using the AVL-Code-Coupling-Interface (ACCI) feature. The advanced ACCI procedure allows the information pertaining to the phase change rates in the liquid domain to appear as cooling rates on the quenched solid boundaries. As a consequence, the code handles the multiphase flow dynamics in the liquid domain in conjunction with the temperature evolution in the solid region in a tightly coupled fashion. The methodology, implemented in the commercial code AVL-FIRE, is exercised in simulating the quenching of solid parts. In part I of the present research, phase change models are validated by simulating a work piece quenching process for which measurement data are available for various water temperature ranging from 20C to 80C. The computations provide a detailed description of the vapor and temperature fields in the liquid and solid domain at various time instants. In particular, the modifications arising in the liquid-vapor flow field in the near vicinity of the solid interface as a function of the boiling mode is well accommodated. The temperature history predicted by our model at different monitoring points, under different subcooling conditions, correlate very well with the experimental data wherever available. In part II, the model is further applied to real engine cylinder head quenching process and assessment is made for the cooling curves for various measuring points. Overall, the predictive capability of the new quenching model is well demonstrated.
In this article, we present the numerical simulation of a real cylinder head quenching cooling process using a newly developed approach for immersion quenching described in Part I of this research. Computational grids, consisting of 1.6 million cells in the coolant (liquid) domain and 1.5 million cells in the solid region, are utilized to perform the ACCI coupled quenching simulation implemented in the commercial code AVL-FIRE framework. Multitude of flow features such as vapor pocket generation, bubble clustering and their disposition are captured very effectively during the computation. Comprehensive descriptions of the flow field information and the temperature pattern in the solid at different time instants are provided. A comparison of the registered temperature readings at different monitoring locations with the numerical results generates an overall very good agreement. Our results indicate the presence of intense non-uniformity in the temperature distribution within the solid region which is of grave importance in evaluating the stress and fatigue patterns generated in the quenched object. The capability of the quenching model in simulating a real-time immersion quenching application process and the efficiency in reducing the overall model size by the application of the ACCI procedure is well demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.