To emerge from the egg case, Argiope aurantia spiderlings must penetrate a tightly woven outer cover composed primarily of large-diameter cylindrical gland fibers and small-diameter fibers, likely of aciniform gland origin. They accomplish this using enzymatic digestion and mastication to form a communal hole in the outer cover. The involvement of proteolytic enzymes in this process was demonstrated by zymography of spiderling homogenates and washes made from the edges of holes. The specific source(s) of the proteases is unknown, but histological examination of spiderling sections indicates that the digestive tract, venom glands, and gnathocoxal glands are all functioning at the time of emergence from the egg case. Observations on edges of holes indicate that spiderlings are able to solubilize the small-diameter fibers completely, but cylindrical gland fibers only partially. In the outer cover, cylindrical fibers are composed of numerous fibrils embedded within a matrix. Spiderlings appear to be unable to solubilize the fibrils, but digestion of the matrix allows the spiderlings to push the fibrils aside to create the opening.
As web spiders usually hang with their head downward, geometrical differences in body position could affect the organization of their central nervous system (CNS). Nevertheless, most of our knowledge of spider's CNS is dependent on what has been revealed from wandering spiders. To fill the gap, we describe here the fine structural organization of the ganglionic neurons and nerves in the geometric orb web spider Nephila clavata. Nerve cells in the supraesophageal ganglion in N. clavata are packed in the frontal, dorsal and lateral regions, but the nerve cells of the subesophageal mass are only restricted to the ventral and ventrolateral regions. High resolution transmission electron microscopy (TEM) reveals the fine structural details of the neuroglial cells and the neuronal cells which have a conspicuous Golgi apparatus, rough ER, free ribosomes and well‐developed mitochondria. Comparing fine structural characteristics of the CNS ganglia with those of wandering spiders in most respects, it has been revealed that the geometrical difference may affects to the arrangement of receptors in the central body known as an important association center for web building behavior. In particular, remarkable differences can be detected in the protocerebral area by the extraordinary development of the central body including absence of the globuli and associated mushroom bodies.
Synthesis of protein by the major ampullate silk glands in the barn spider, Araneus cavaticus was stimulated by depleting the storage of silk protein in the ampulla by mechanically pulling fiber from the spigot. After this treatment, fine structural changes of the glandular epithelium during silk production were examined using light and transmission electron microscopes. In the process of rapid production, major secretory silk was synthesized at the tail region via rER of glandular epithelial cells, and was transported into the ampulla region. The mature secretory product in glandular epithelium appears almost spherical vacuoles which were grown up by fusion with the surrounding small vesicles including the secretory silk. Unlike to a typical process of the secretion, the ampullate silk of tail region seems to bypass either concentrating or packaging steps by the Golgi apparatus. However there's no doubt that the Golgi apparatus also play an important role in the secretory process of the ampulla region. After mechanical pulling stimulation, both epithelia of ampulla and tail regions appeared as a thinner layer of columnar cells with less definitive cell membrane. There are few secretory droplets within these cells, thus causing this region to stain much lighter. It is obvious that the cell loses part of its cytoplasm in this process, and disorganization of the secretory product occurs when it is extruded from the cells by a apocrine release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.