This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of backpropagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART-ANFIS model has potential for fault diagnosis of induction motors.
Predicting degradation of working conditions of machinery and trending of fault propagation before they reach the alarm or failure threshold is extremely importance in industry to fully utilize the machine production capacity. This paper proposes a method to predict future conditions of machines based on one-step-ahead prediction of time-series forecasting techniques and regression trees. In this study, the embedding dimension is firstly estimated in order to determine the necessary available observations for predicting the next value in the future. This value is subsequently utilized for regression tree predictor. Real trending data of low methane compressor acquired from condition monitoring routine are employed for evaluating the proposed method. The results indicate that the proposed method offers a potential for machine condition prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.