The numerical simulation of heat transfer and pressure drop characteristics was carried out on the airflow through a rectangular channel-mounted vortex generator (VG). The VG was installed on a plate that was attached to the heater. The inlet velocity of the airflow varied from 0.4 to 2.0 m/s. The VGs used in this study were concave delta winglet pairs (CDWPs) with the attack angle of 30° and with variation in the number of rows: one pair, two pairs, and three pairs. The CDWPs are predicted to produce the longitudinal vortex (LV), which increases the intensity of turbulence resulting in better mixing of flow. This, in turn, can improve the heat transfer between the plate surface and the airflow in the rectangular channel. The results showed that the installation of CDWPs does improve the overall heat transfer performance. However, it has the consequences of a greater pressure drop. Based on the variation in the number of rows, the greater the number of pairs of VGs was the greater the convection heat transfer coefficient (h) in both laminar and turbulent flows. The h value was based on the number of row of CDWPs: one pair, two pairs, and three pairs exhibited increases of 65.9108.4%; 34.471%; and 42.2110.7% compared to the baseline, respectively. A great number of rows of VGs also led to an increasing pressure drop value in laminar and turbulent flows. The percentage increases in pressure drop for CDWPs with one pair, two pairs, and three pairs, as compared to the baseline, were 70.192.1%; 123.6161.3%, and 180266.9%, respectively.
The passive method by using a vortex generator (VG) is an effective method for the improvement of convective heat transfer. This study is focused on usage of concave rectangular winglet vortex generator (CRW VG) for improving convective heat transfer in a fin-and-tube heat exchanger using numerical simulation. Concave rectangular winglet pairs (CRWP) and rectangular winglet pairs (RWP) VGs were mounted inside the gap between fins (gas side) with variations of the number of VG pairs of rows. Inlet air velocity variations expressed by the Reynolds numbers were ranged from 364 to 689. Augmentation of heat transfer is indicated by the ratio value of heat transfer convection coefficient between cases using VG and that without using VG (baseline). The results show that the convection heat transfer coefficient for cases using CRWP VG is higher than that using RWP VG. Convection heat transfer coefficient increases up to 102% by mounting CRWP VG at Re = 364. However, the increase in convection coefficient is accompanied by a rise in pressure drop to 216.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.