Keyword spotting (KWS) and speaker verification (SV) have been studied independently although it is known that acoustic and speaker domains are complementary. In this paper, we propose a multi-task network that performs KWS and SV simultaneously to fully utilize the interrelated domain information. The multi-task network tightly combines sub-networks aiming at performance improvement in challenging conditions such as noisy environments, open-vocabulary KWS, and short-duration SV, by introducing novel techniques of connectionist temporal classification (CTC)-based soft voice activity detection (VAD) and global query attention. Frame-level acoustic and speaker information is integrated with phonetically originated weights so that forms a word-level global representation. Then it is used for the aggregation of feature vectors to generate discriminative embeddings. Our proposed approach shows 4.06% and 26.71% relative improvements in equal error rate (EER) compared to the baselines for both tasks. We also present a visualization example and results of ablation experiments.
Acoustic word embeddings -fixed-dimensional vector representations of arbitrary-length words -have attracted increasing interest in query-by-example spoken term detection. Recently, on the fact that the orthography of text labels partly reflects the phonetic similarity between the words' pronunciation, a multi-view approach has been introduced that jointly learns acoustic and text embeddings. It showed that it is possible to learn discriminative embeddings by designing the objective which takes text labels as well as word segments. In this paper, we propose a network architecture that expands the multi-view approach by combining the Siamese multiview encoders with a shared decoder network to maximize the effect of the relationship between acoustic and text embeddings in embedding space. Discriminatively trained with multi-view triplet loss and decoding loss, our proposed approach achieves better performance on acoustic word discrimination task with the WSJ dataset, resulting in 11.1% relative improvement in average precision. We also present experimental results on cross-view word discrimination and word level speech recognition tasks.Index Termsacoustic word embedding, query-byexample spoken term detection, multi-view learning, Siamese network, encoder-decoder
Currently, the most widely used approach for speaker verification is the deep speaker embedding learning. In this approach, we obtain a speaker embedding vector by pooling single-scale features that are extracted from the last layer of a speaker feature extractor. Multi-scale aggregation (MSA), which utilizes multiscale features from different layers of the feature extractor, has recently been introduced and shows superior performance for variable-duration utterances. To increase the robustness dealing with utterances of arbitrary duration, this paper improves the MSA by using a feature pyramid module. The module enhances speaker-discriminative information of features from multiple layers via a top-down pathway and lateral connections. We extract speaker embeddings using the enhanced features that contain rich speaker information with different time scales. Experiments on the VoxCeleb dataset show that the proposed module improves previous MSA methods with a smaller number of parameters. It also achieves better performance than state-ofthe-art approaches for both short and long utterances.
Previous researches on acoustic word embeddings used in query-by-example spoken term detection have shown remarkable performance improvements when using a triplet network. However, the triplet network is trained using only a limited information about acoustic similarity between words. In this paper, we propose a novel architecture, phonetically associated triplet network (PATN), which aims at increasing discriminative power of acoustic word embeddings by utilizing phonetic information as well as word identity. The proposed model is learned to minimize a combined loss function that was made by introducing a cross entropy loss to the lower layer of LSTM-based triplet network. We observed that the proposed method performs significantly better than the baseline triplet network on a word discrimination task with the WSJ dataset resulting in over 20% relative improvement in recall rate at 1.0 false alarm per hour. Finally, we examined the generalization ability by conducting the out-of-domain test on the RM dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.