Mast cells are among the principal effector cells in the pathogenesis of allergic asthma. In allergic reactions, allergen (Ag)-induced cross-linking of IgE bound to FcεRI on mast cells results in the production of vascular endothelial growth factor (VEGF), which is essential for the initiation and development of the allergic response. Despite the central role of VEGF in allergic asthma, the signaling events responsible for the production of VEGF remain unclear, particularly in Ag-stimulated mast cells. In the present study, we observed that blocking leukotriene B4 receptor 2 (BLT2) completely abrogated the production of VEGF in Ag-stimulated bone marrow-derived mast cells (BMMCs). The synthesis of BLT2 ligands (leukotriene B4 and 12(S)-hydroxyeicosatetraenoic acid) was also required for VEGF production, suggesting a mediating role of an autocrine BLT2 ligands-BLT2 axis in the production of VEGF in mast cells. The NADPH oxidase 1-reactive oxygen species-NF-κB cascade is downstream of BLT2 during Ag signaling to VEGF synthesis in mast cells. Furthermore, the level of VEGF synthesis in genetically mast cell-deficient Kit(W/Wv) mice was significantly lower than that in wild-type mice in the OVA-induced asthma model, suggesting that mast cells play a critical role in the synthesis of VEGF in OVA-induced allergic asthma. Importantly, VEGF production was restored to the levels observed in wild-type mice after adoptive transfer of normal BMMCs into Kit(W/Wv) mice but was not restored in BLT2(-/-) BMMC-reconstituted Kit(W/Wv) mice in the OVA-induced asthma model. Taken together, our results suggest that BLT2 expression in mast cells is essential for the production of VEGF in OVA-induced allergic asthma.
In an experimental asthma model, the activation of TLR4 by bacterial LPS occasionally exacerbates allergic inflammation through the production of Th2 cytokines, and mast cells have been suggested to play a central role in this response. However, the detailed mechanism underlying how LPS/TLR4 stimulates the production of Th2 cytokines, especially IL-13, remains unclear in mast cells. In the current study, we observed that the expression levels of leukotriene B4 receptor-2 (BLT2) and the synthesis of its ligands were highly upregulated in LPS-stimulated bone marrow-derived mast cells and that BLT2 blockade with small interfering RNA or a pharmacological inhibitor completely abolished IL-13 production, suggesting a mediatory role of the BLT2 ligand-BLT2 axis in LPS/TLR4 signaling to IL-13 synthesis in mast cells. Moreover, we demonstrated that MyD88 lies upstream of the BLT2 ligand-BLT2 axis and that this MyD88-BLT2 cascade leads to the generation of reactive oxygen species through NADPH oxidase 1 and the subsequent activation of NF-κB, thereby mediating IL-13 synthesis. Interestingly, we observed that costimulation of LPS/TLR4 and IgE/FcεRI caused greatly enhanced IL-13 synthesis in mast cells, and blockading BLT2 abolished these effects. Similarly, in vivo, the IL-13 level was markedly enhanced by LPS administration in an OVA-induced asthma model, and injecting a BLT2 antagonist beforehand clearly attenuated this increase. Together, our findings suggest that a BLT2-linked cascade plays a pivotal role in LPS/TLR4 signaling for IL-13 synthesis in mast cells, thereby potentially exacerbating allergic response. Our findings may provide insight into the mechanisms underlying how bacterial infection worsens allergic inflammation under certain conditions.
Our results suggest that "MyD88-5-/12-LO-BLT2-NF-κB" cascade significantly contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus potentially contributing to asthmatic development and exacerbation.
Arachidonate 5‐lipoxygenase‐activating protein (ALOX5AP) plays a role in the 5‐lipoxygenase (LO) pathway, which includes the LTC4, LTD4, LTE4 and LTB4. These leukotrienes are known causative factors of asthma, allergy, atopy and cardiovascular diseases. ALOX5AP lacks enzyme activity and acts by helping 5‐LO function. In this study, healthy and general subjects who live in rural and urban areas of Korea were tested for the association of ALOX5AP polymorphisms with lung function. Lung function was also estimated by calculating the predicted values for forced expiratory volume in one second (FEV1_%PRED) and the proportion of the forced vital capacity exhaled in the first second (FEV1/FVC_PRED). The linear regression was adjusted for residence area, gender, age, height and smoking status. The analysis revealed associations between FEV1 and the single‐nucleotide polymorphism (SNP) rs9506352 and the haplotype TCAC (permuted P‐value < 0.05). The linkage disequilibrium block that included the significant SNPs overlapped with SNPs that were revealed previously to associate with myocardial infarction and asthma and to affect lung function. This study is the first to demonstrate the association between lung function and ALOX5AP polymorphisms in a healthy and general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.