Prevailing video frame interpolation techniques rely heavily on optical flow estimation and require additional model complexity and computational cost; it is also susceptible to error propagation in challenging scenarios with large motion and heavy occlusion. To alleviate the limitation, we propose a simple but effective deep neural network for video frame interpolation, which is end-to-end trainable and is free from a motion estimation network component. Our algorithm employs a special feature reshaping operation, referred to as PixelShuffle, with a channel attention, which replaces the optical flow computation module. The main idea behind the design is to distribute the information in a feature map into multiple channels and extract motion information by attending the channels for pixel-level frame synthesis. The model given by this principle turns out to be effective in the presence of challenging motion and occlusion. We construct a comprehensive evaluation benchmark and demonstrate that the proposed approach achieves outstanding performance compared to the existing models with a component for optical flow computation.
Videos contain various types and strengths of motions that may look unnaturally discontinuous in time when the recorded frame rate is low. This paper reviews the first AIM challenge on video temporal super-resolution (frame interpolation) with a focus on the proposed solutions and results. From low-frame-rate (15 fps) video sequences, the challenge participants are asked to submit higher-framerate (60 fps) video sequences by estimating temporally intermediate frames. We employ the REDS VTSR dataset derived from diverse videos captured in a hand-held camera for training and evaluation purposes. The competition had 62 registered participants, and a total of 8 teams competed in the final testing phase. The challenge winning methods achieve the state-of-the-art in video temporal superresolution. Resolution Members: Seungjun Nah 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.