Solid oxide fuel cells (SOFCs) consist of ceramic materials. Because of the brittle nature of ceramics, durability decrease of a SOFC system or mechanical failure of cells can be caused by transient behavior, that is, sudden temperature variation and axial temperature gradient. Therefore, it is important to understand the transient behavior of a SOFC. To study the transient behavior of a direct internal reforming (DIR) planar solid oxide fuel cell (SOFC), a one-dimensional dynamic model is presented. This model is modified to predict the heatup and start-up behavior. The heat-up time and start-up time are calculated from the model. The heat-up time can be adjusted by manipulating air velocity and temperature. During the start-up mode, the effects of initial temperature of the PEN (positive electrode/electrolyte/negative electrode) structure and air temperature are investigated. The fuel cell characteristics such as cell voltage, current density distribution, and temperature distribution can be calculated from the modified dynamic model. Consequently, this model can be useful to investigate the transient behavior during heat-up and start-up modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.