Problem statement: Metal Matrix Composites (MMC) have become a leading material among composite materials and in particular, particle reinforced aluminum MMCs have received considerable attention due to their excellent engineering properties. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement elementlike Alumina (Al 2 O 3 ). Approach: In this study, an attempt has been made to model the machinability evaluation through the response surface methodology in machining of homogenized 10% micron Al 2 O 3 LM25 Al MMC manufactured through stir casting method. Results: The combined effects of three machining parameters including cutting speed (s), feed rate (f) and depth of cut (d) on the basis of three performance characteristics of tool wear (VB), surface Roughness (Ra) and cutting Force (Fz) were investigated. The contour plots were generated to study the effect of process parameters as well as their interactions. Conclusion: The process parameters are optimized using desirability-based approach response surface methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.