Annealing is a vital approach to tuning the morphological and structural properties of materials; thus the effect of various annealing temperatures on Ag+-doped ZnO thin film was investigated. Using a two-step synthesis method, mist atomization (for a ZnO seed layer) and the solution immersion method (for Ag+-doped ZnO), the thin films were annealed at 300, 400, 500 and 600 °C. The morphological, structural, crystallinity, crystal quality and electrical properties were measured using field-emission scanning electron microscopy (FESEM), atomic force microscopy, X-ray diffraction (XRD), Raman spectroscopy and current–voltage measurement. The FESEM micrographs showed enhanced growth along the c-axis (002) crystallographic plane, as supported by the XRD result. In comparison to that of the original film, the crystallite size increased from 33.42 nm to 59.02 nm when the film was annealed at 500 °C. Likewise, the electrical conductivity increased to 83% for the thin film annealed at 500 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.