A visual display system of changes in the physiological state of patients and their data transmission via optical wireless communication is presented. Existing methods such as bedside monitors do not provide the possibility of visual display of information near the object in conditions of high workload of personnel and allow transmitting data via an electric cable or remotely in the radio frequency range. Such disadvantages reduce the responsiveness of personnel and lead to numerous errors in the transmitted data. A remote operational monitoring system is more effective, providing data collection from sensors, display with minimal delay time and data transmission over an interference-free communication channel in the optical range. A simple and visual way of displaying information allows to quickly and accurately recognize critical situations. The proposed system has two channels. The first channel provides a visual representation of changes in the physiological state on the visual display device in the form of a bracelet. The second channel allows transmitting data about the deviation in the patient's condition via optical wireless communication in the infrared range of the spectrum for detailed display on a computer. The visual representation of changes in the physiological state is based on programmable change in the color of the LED indicators and on change in their operation modes. The block diagram and design of the visual display and data transmission system are presented. As part of the evaluation of the system operability, the heating of the visual display device in the COMSOL Multiphysics was evaluated. It is shown, that the average heating temperature of the indicator part in contact with human skin does not exceed 24 °C and is safe for the patient. The optical scheme of the receiving unit and the transmitting module is presented. The optical model of the module is presented in the Zemax program. It is shown, that the required average optical power of the working spectral region is 235 μW for the four infrared LEDs and four photodiodes located at a distance of 1 meter. A description of the working layout of a visual display and data transmission device is presented, including a digital pulse sensor and blood oxygen level, a color control and data processing unit, a visual display device, and a data transmission unit. The Система визуального отображения изменения физиологического состояния пациентов...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.