Dopamine (DA) content, tyrosine decarboxylase (TDC) activity and survival were studied under normal and environmental stress conditions in the ste and e strains carrying ebony mutation increasing DA level and the octopamineless strain Tbetah(nM18) of Drosophila melanogaster. Wild-type strains Canton S and Oregon R, and strain p845 from which Tbetah(nM18) strain was derived were used as controls. Sexual dimorphism of TDC activity, DA content, and survival in flies of all D. melanogaster strains under study was found. Tbetah(nM18) mutation sharply reduced TDC activity in females, while ebony had no such effect. DA content and survival under heat stress in Tbetah(nM18) flies did not differ from those in the wild type. ste and e flies had drastically increased DA content under normal conditions, dramatically decreased survival under heat stress, but increased survival under starvation. DA content and survival under heat stress were also studied in the reciprocal hybrids (males) F(1) of the cross D. virilis strains 101 (wild type) and 147 with X-linked mutation, which significantly increases DA content. 147x101 males had a considerably higher DA content and lower survival than 101x147 ones. Individuals of all D. melanogaster strains under study developed the stress reaction, as judged by changes in TDC activity and DA levels. The role of biogenic amines in the stress reaction development and adaptation to environmental stresses in Drosophila is discussed. Arch. Insect Biochem. Physiol. 55:55-67, 2004.
The apterous56f (ap56f) mutation leads to increases in juvenile hormone (JH) degradation levels and JH-esterase makes a greater contribution to the increase than JH-epoxide hydrolase. Dopamine levels in ap56f females, but not males, are higher than in wild-type. JH treatment of ap56f and wild-type females decreases their dopamine levels. ap56f females, but not males, produce less progeny. Survival under heat stress is dramatically decreased in ap56f females, but not males. ap56f flies show a stress reaction, as judged by changes in tyrosine decarboxylase and JH-hydrolysing activities, dopamine levels and fertility, but its intensity in the mutant females, but not males, differs significantly from wild-type. Thus, the ap56f mutation causes dramatic changes in female, but not male, metabolism and fitness.
The effects of increased level of dopamine (DA) (feeding flies with DA precursor, L-dihydroxyphenylalanine, L-DOPA) on the level of 20-hydroxyecdysone (20E) and on juvenile hormone (JH) metabolism in young (2-day-old) wild type females (the strain wt) of Drosophila virilis have been studied. Feeding the flies with L-DOPA increased DA content by a factor of 2.5, and led to a considerable increase in 20E level and a decrease of JH degradation (an increase in JH level). We have also measured the levels of 20E in the young (1-day-old) octopamineless females of the strain Tbetah(nM18) and in wild type females, Canton S, of D. melanogaster. The absence of OA led to a considerable decrease in 20E level (earlier it was shown that in the Tbetah(nM18) females, JH degradation was sharply increased). We have studied the effects of JH application on 20E level in 2-day-old wt females of D. virilis and demonstrated that an increase in JH titre results in a steep increase of 20E level. The supposition that biogenic amines act as intermediary between JH and 20E in the control of Drosophila reproduction is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.