Magnetoelectric effects (ME) in ferromagnetic-ferroelectric layered composites arise due to magnetostriction and piezoelectric effect in the ferroic phases and are mediated by mechanical strain. The ME coupling strength in such composites could be measured by electrical response to an applied ac magnetic field h and a bias magnetic field H. The coupling, in general, is linear for small ac field amplitudes, but one expects nonlinear ME interactions for high field strengths since the dependence of magnetostriction λ on magnetic fields is nonlinear. Here we report on nonlinear voltage response of a composite of ferromagnetic Metglas and piezoelectric lanthanum gallium tantalate (langatate) subjected to an ac and a bias magnetic fields, resulting in the generation of voltages at harmonics of the frequency of h. The dependences of the ME voltage of the first four harmonics on the magnetic fields for H = 0–20 Oe and h = 0–50 Oe were measured. Up to a hundred harmonics were observed in the voltage versus frequency spectra and was indicative of high nonlinearity of the ME coupling in the multiferroic structure. It is shown that for h smaller than the saturation magnetic field HS for magnetostriction in the ferromagnetic layer, the amplitudes of the ME voltages are proportional to the derivatives of λ with respect to H and show a power-law dependence on the pumping field amplitude An(H) ~ λ(n)(H)hn. We discuss a procedure for estimating the amplitudes of the harmonics for large pumping fields h, on the order of HS. The nonlinear ME effects in the composites are of interest for application in signal processing devices and highly sensitive magnetic field sensors.
Theory for nonlinear mixing of harmonic magnetic fields in a ferromagnetic-ferroelectric composite structure has been developed and compared with data. In the voltage response of the composite, the model predicts a dc voltage proportional to the magnetostriction λ and its second derivative p with respect to the bias field H, an ac voltage due to linear magnetoelectric effect that is proportional to the piezomagnetic coefficient q, and a third term due to nonlinear mixing of the ac magnetic fields that is proportional to p. Doubling of the frequency and generation of voltages with sum and difference frequencies are expected due to nonlinearity of λ (H). The theoretically predicted effects are investigated in a sample of amorphous ferromagnetic film FeBSiC and a bimorph of lead zirconate titanate. Both the efficiency of frequency doubling and nonlinear mixing of the ac magnetic fields are found to be proportional to p. The effects discussed here are of interest for magnetic field sensors and signal processing devices such as mixers, frequency doublers, frequency dividers, and modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.