mined out from primary ore and 105 t from the Omchak placer, related to the Natalka deposit. The follow-up exploration of the deposit in 2004-2007 resulted in the estimation of resources at 1760 t with a Au grade of 1.7 g/t (Grigorov, 2006). This deposit is a typical example of orogenic deposits localized in collision belts composed of volcanosedimentary and terrigenous rocks metamorphosed under conditions of greenschist facies (Goldfarb et al., 2005).Abstract -REE patterns of hydrothermally altered rocks, fluid inclusions, and stable oxygen isotopes of quartz were studied at the Natalka gold deposit. Metasomatic rocks formed under decompression reveal gradual depletion in LREE and HREE relative to siltstone of the protolith. The HREE patterns of metasomatic rocks formed under decompression are uniform; an insignificant removal of LREE can be noted. The progressive extraction of REE with increasing alteration of rocks could have been due to the effect of magmatogenic or meteoric fluid. Because a Ce anomaly is absent, the participation of oxidized meteoric water was limited. The inverse correlation between the total REE content and the Eu anomaly value in altered rocks indicates a substantial role of magmatogenic fluid. The REE patterns of altered rocks formed under compression show that the role of metamorphic fluid was not great. All metasomatic rocks are enriched in LREE, so that the enrichment of fluid in LREE as well may be suggested. Three fluid compositions were captured as fluid inclusions: (1) H 2 O-CO 2 -NaCl-MgCl 2 with a salinity of 1.0-4.9 wt % NaCl equiv, (2) CO 2 -CH 4 , and (3) H 2 O-NaCl-MgCl 2 with a salinity of 7.0-5.6 wt % NaCl equiv. Compositions (1) and (2) coexisted in the mineral-forming system at 250-350 ° C and 1.1-2.4 kbar as products of phase separation under conditions of decreasing P and T . The interaction of this fluid with host rocks resulted in the formation of extensive halos of beresitized rocks with sulfide disseminations. The precipitation of arsenopyrite and pyrite led to the substantial depletion of mineral-forming fluid in H 2 S and destabilization of the Au(HS) 2-complex. The fluid with the third composition arose due to the boiling of the H 2 O-CO 2 -CH 4 -NaCl-MgCl 2 liquid and was responsible for metasomatic alteration of host rocks. The late mineral assemblages were deposited from this fluid at the initial stage of ore formation. The high methane concentrations in the ore-forming fluid were likely caused by interaction of hydrothermal ore-bearing solutions with carbonaceous host rocks. The δ 18 O values of quartz from quartz-scheelite-pyrite-arsenopyrite and sulfide-sulfosalt mineral assemblages vary from +11.6 to +14.1‰ and +11.2 to +13.5‰, respectively. The parental fluids of the early and late mineral assemblages probably were derived from a magmatic source and were characterized by δ 18 = +6.3 to +8.8‰ at 350 ° C and +3.6 to +5.9‰ at 280 ° C, respectively. The narrow interval of oxygen isotopic compositions shows that this source was homogeneous. The data obtained ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.