Drying aqueous suspensions of monodisperse silica nanoparticles can fracture in remarkable patterns. As the material solidifies, evenly spaced cracks invade from the drying surface, with individual cracks undergoing intermittent motion. We show that the growth of cracks is limited by the advancement of the compaction front, which is governed by a balance of evaporation and flow of fluid at the drying surface. Surprisingly, the macroscopic dynamics of drying show signatures of molecular-scale fluid effects.
We investigate the dynamics of fracture in drying films of colloidal silica. Water loss quenches the nanoparticle dispersions to form a liquid-saturated elastic network of particles that relieves drying-induced strain by cracking. These cracks display intriguing intermittent motion originating from the deformation of arrested crack tips and aging of the elastic network. The dynamics of a single crack exhibits a universal evolution, described by a balance of the driving elastic power with the sum of interfacial power and the viscous dissipation rate of flowing interstitial fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.