High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement.
Metal oxide thin-film transistors are fast becoming a ubiquitous technology for application in driving backplanes of organic light-emitting diode displays. Currently all commercial products rely on metal oxides processed via physical vapor deposition methods. Transition to simpler, higher throughput manufacturing methods such as solution-based processes, are currently been explored as cost-effective alternatives. However, developing printable oxide transistors with high carrier mobility and bias-stable operation has proved challenging. Here we show that hybrid multilayer channels composed of alternating ultra-thin layers (≤4 nm) of indium oxide, zinc oxide nanoparticles, ozone-treated polystyrene and a compact zinc oxide layer, all solution-processed in ambient atmosphere, can be used to create TFTs with remarkably high electron mobility (50 cm 2 /Vs) and record operational stability. Insertion of the ozone-treated polystyrene interlayer is shown to reduce the concentration of electron traps at the metal oxide surfaces and heterointerfaces. The resulting transistors exhibit dramatically enhanced bias stability over 24 h continuous operation and while subjected to large electric-field flux density (2.1×10 -6 C/cm 2 ) with no adverse effects on the electron mobility. Density functional theory calculations identify the origin of this enhanced stability as the passivation of the oxygen vacancy-related gap states due to interaction between ozonolyzed styrene moieties and the oxides. Our results sets new design guidelines for bias-stress resilient metal oxide transistors. Main textMoving away from sophisticated, capital intensive manufacturing processes, soluble semiconductors 1,2,3 not only promise to deliver devices with unusual physical characteristics and enhanced performance, but also trigger a paradigm shift in manufacturing philosophy by embracing scalable, cost-effective processes such as chemical spray pyrolysis, 4 ink-jet printing, 5 slot-die coating, 6 among others. As consequence the interest in solution-based manufacturing of consumer electronics is rapidly increasing with global tech giants investing heavily in emerging forms of printed electronics. 7 Among a variety of soluble electronic materials, oxide semiconductors offer a breadth of intriguing assets, including high charge carrier mobility, 8 optical transparency, 9 versatile synthesis, 10 low manufacturing cost 11 etc., the combination of which makes them ideal for use in a range of rapidly emerging applications in the field of printed electronics. Among them, thin-film transistor (TFTs) technologies are a priority for solution processable oxides as they promise to amplify the technological impact of their vacuum-grown counterparts 11 by reducing the manufacturing cost. For these reasons, continuous research efforts have been devoted to improving the operating characteristics of
The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution -namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) -has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.