We have developed a database of lymphoid polypeptides detected by two-dimensional polyacrylamide gel electrophoresis to aid in studies of leukemogenesis and of mutation affecting protein structure. In prior studies, we observed a 19-kDa phosphopolypeptide which was induced with proliferation in mature T cells and constitutively expressed in immature thymocytes. In this report we describe the identififcation of this polypeptide as the phosphorylated form of dUTPase (EC 3.6.1.23), following cDNA cloning of the gene, based on a partial amino acid sequence of the phosphopolypeptide. Studies of the expression and phosphorylation of dUTPase in human T cells indicate that accumulation and phosphorylation of dUTPase in mature T cells occur in a cell cycle-dependent manner. Interestingly, noncycling immature thymocytes express constitutively high levels of phosphorylated and unphosphorylated dUTPase. These results suggest an important role for dUTPase in immature thymocytes that is independent of proliferation.
Megakaryocytes undergo an unusual cell cycle during differentiation that results in polyploidy through largely unknown mechanism(s). It has been shown that serine phosphorylation of oncoprotein 18 (Op18) is required for cell cycle progression specifically at the G2/M transition. Moreover, mutant forms of Op18 that are defective in one or more of the four serine residues induce G2/M arrest and subsequent polyploidization. Op18 phosphorylation is rapidly induced with phorbol myristate acetate (PMA) treatment in a wide range of human cells. In this study, we investigated the role of Op18 in PMA induced polyploidization during megakaryocyte differentiation of the human erythroleukemia cell line. Crucial to the molecular analysis of megakaryocyte differentiation, is the ability to fractionate cell populations with different ploidy levels. We have utilized cell elutriation as a fractionation strategy to analyze Op18 expression in synchronized cell subpopulations in different phases of the cell cycle or with progressive megakaryocyte polyploidization. In the absence of PMA, increased phosphorylation of Op18 was observed in HEL cells during cell cycle progression, as for other proliferating cells. However, in contrast to Jurkat leukemia cells chosen as control, HEL cells exhibited a lack of Op18 phosphorylation in response to PMA, which was accompanied by polyploidization and differentiation along the megakaryocytic lineage. To further determine the role of Op18 in polyploidization, HEL cells were transfected with different Op18 expression constructs. Differences in cell survival and polyploidization were observed between high and low Op18 expressors. An increased Op18 level reduced cell survival during the early stage of PMA induced megakaryocyte differentiation, but enhanced polyploidization efficiency. Our findings suggest that maintenance of a high level of unphosphorylated Op18 is required for efficient polyploidization during the differentiation program of megakaryocytes.
Megakaryocytes undergo an unusual cell cycle during differentiation that results in polyploidy through largely unknown mechanism(s). It has been shown that serine phosphorylation of oncoprotein 18 (Op18) is required for cell cycle progression specifically at the G2/M transition. Moreover, mutant forms of Op18 that are defective in one or more of the four serine residues induce G2/M arrest and subsequent polyploidization. Op18 phosphorylation is rapidly induced with phorbol myristate acetate (PMA) treatment in a wide range of human cells. In this study, we investigated the role of Op18 in PMA induced polyploidization during megakaryocyte differentiation of the human erythroleukemia cell line. Crucial to the molecular analysis of megakaryocyte differentiation, is the ability to fractionate cell populations with different ploidy levels. We have utilized cell elutriation as a fractionation strategy to analyze Op18 expression in synchronized cell subpopulations in different phases of the cell cycle or with progressive megakaryocyte polyploidization. In the absence of PMA, increased phosphorylation of Op18 was observed in HEL cells during cell cycle progression, as for other proliferating cells. However, in contrast to Jurkat leukemia cells chosen as control, HEL cells exhibited a lack of Op18 phosphorylation in response to PMA, which was accompanied by polyploidization and differentiation along the megakaryocytic lineage. To further determine the role of Op18 in polyploidization, HEL cells were transfected with different Op18 expression constructs. Differences in cell survival and polyploidization were observed between high and low Op18 expressors. An increased Op18 level reduced cell survival during the early stage of PMA induced megakaryocyte differentiation, but enhanced polyploidization efficiency. Our findings suggest that maintenance of a high level of unphosphorylated Op18 is required for efficient polyploidization during the differentiation program of megakaryocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.