A new method of filling of high-temperature fixed-point cells based on metal-carbon eutectics and peritectics is suggested and tested. In this method a metal and carbon powder mixture is introduced not directly into the crucible, but into an additional container located just above the crucible. The mixture melts inside the container, and the already molten eutectic drops through a small hole in the bottom of the container and fills the crucible drop by drop. The method can be used to obtain a uniform ingot without porous or foundry cavities, to minimize the risk of contamination, and to avoid some other disadvantages. The method was applied to fabricate Re-C and WC-C cells using 5N purity materials. The cells demonstrated a good plateau shape with melting ranges of 0.2 K and 80 mK for Re-C and WC-C, respectively. The Re-C cell was compared with a cell built at NMIJ and showed good agreement with a difference of melting temperatures of only 45 mK.
Two high-temperature blackbodies were developed and tested. The first one is a graphite blackbody with a maximum temperature of 2000 • C, an opening of 40 mm, and an emissivity of 0.995. It is intended for the routine calibration of pyrometers. The second one is a small version of a pyrolytic graphite (PG) blackbody with a cavity diameter of 15 mm, an opening of 10 mm, and an emissivity of 0.9996. The blackbody has two options with maximum temperatures of 2500 • C and 3000 • C, respectively. With these, the list of high-temperature blackbodies developed at VNIIOFI consists of five PG types and one graphite type, which can be used in radiation thermometry as precision Planckian sources or furnaces for fixed-point applications. The article also describes modifications to the PG furnace, where PG heater rings are replaced partly or totally by graphite elements. Such modifications extend the lifetime of the heater, reduce the cost for some applications and, for some cases, improve the temperature uniformity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.