In the present study, machine learning approaches have been developed to predict the 180 days aged core shear strength of sandwich composites. The characteristics of the sandwich composites depends on the number of factors namely fibre type i.e., Chopped strand Mat, Stitched, Chopped strand Mat and Woven Roving, core density, bond between the core and the face sheets and the ability to bear the load in flexural mode. In the current approach deep learning and SVR models were worked out by taking on six different parameters namely foam density, aging temperature and variety of fiber types as input variables. For each set of these input variables, the 180 days aged shear strength of sandwich composites with a test frequency of 30 days was determined. The paper aims at predicting the core shear strength value of stitch bond sandwich composites using other three aforementioned fibers. To create the model and confirm the accuracy of the algorithm training and test data are considered. The results obtained revealed that the deep learning model develo ped provides better predictive ability than the model of SVR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.