Let L be a Lévy process on [0, +∞). In particular cases, when L is a Wiener or Poisson process, any square integrable random variable can be decomposed in a series of repeated stochastic integrals from nonrandom functions with respect to L. This property of L, known as the chaotic representation property (CRP), plays a very important role in the stochastic analysis. Unfortunately, for a general Lévy process the CRP does not hold.There are different generalizations of the CRP for Lévy processes. In particular, under the Itô's approach one decomposes a Lévy process L in the sum of a Gaussian process and a stochastic integral with respect to a Poisson random measure, and then uses the CRP for both terms in order to obtain a generalized CRP for L. The Nualart-Schoutens's approach consists in decomposition of a square integrable random variable in a series of repeated stochastic integrals from nonrandom functions with respect to so-called orthogonalized centered power jump processes, these processes are constructed with using of a cádlág version of L. The Lytvynov's approach is based on orthogonalization of continuous polynomials in the space of square integrable random variables.In this paper we construct the extended stochastic integral with respect to a Lévy process and the Hida stochastic derivative in terms of the Lytvynov's generalization of the CRP; establish some properties of these operators; and, what is most important, show that the extended stochastic integrals, constructed with use of the above-mentioned generalizations of the CRP, coincide.
Using a general approach that covers the cases of Gaussian, Poissonian, Gamma, Pascal and Meixner measures, we consider an extended stochastic integral and construct elements of a Wick calculus on parametrized Kondratiev-type spaces of generalized functions; consider the interconnection between the extended stochastic integration and the Wick calculus; and give an example of a stochastic equation with a Wick-type nonlinearity. The main results consist of studying the properties of the extended (Skorohod) stichastic integral subject to the particular spaces under consideration; and of studying the properties of a Wick product and Wick versions of holomorphic functions on the parametrized Kondratiev-type spaces. These results are necessary, in particular, in order to describe properties of solutions of normally ordered white noise equations in the "Meixner analysis".
The operators of stochastic differentiation, which are closely related with the extended Skorohod stochastic integral and with the Hida stochastic derivative, play an important role in the classical (Gaussian) white noise analysis. In particular, these operators can be used in order to study properties of the extended stochastic integral and of solutions of stochastic equations with Wick-type nonlinearities. In this paper we introduce and study bounded and unbounded operators of stochastic differentiation in the Levy white noise analysis. More exactly, we consider these operators on spaces from parametrized regular rigging of the space of square integrable with respect to the measure of a Levy white noise functions, using the Lytvynov's generalization of the chaotic representation property. This gives a possibility to extend to the Levy white noise analysis and to deepen the corresponding results of the classical white noise analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.