Acetylcholinesterase (AChE) inhibitor donepezil is widely used for the treatment of Alzheimer's disease (AD). The mechanisms of therapeutic effects of the drug are not well understood. The ability of donepezil to reverse a known pathogenic effect of β-amyloid peptide (Abeta), namely, the impairment of hippocampal long-term potentiation (LTP), was not studied yet. The goal of the present study was to study the influence of donepezil in 0.1-10 μM concentrations on control and Abeta-impaired hippocampal LTP. Possible involvement of N-methyl-D: -aspartate receptors (NMDARs) into mechanisms of donepezil action was also studied. LTP of population spike (PS) was studied in the CA1 region of rat hippocampal slices. Change of LTP by donepezil treatment had a bell-shaped dose-response curve. The drug in concentrations of 0.1 and 1 μM did not change LTP while in concentration of 0.5 μM significantly increased it, and in concentration of 5 and 10 μM suppressed LTP partially or completely. Abeta (200 nM) markedly suppressed LTP. Addition of 0.1, 0.5 or 1 μM donepezil to Abeta solution caused a restoration of LTP. N-methyl-D: -aspartate (NMDA) currents were studied in acutely isolated pyramidal neurons from CA1 region of rat hippocampus. Neither Abeta, nor 0.5 μM donepezil were found to change NMDA currents, while 10 μM donepezil rapidly and reversibly depressed it. Results suggest that donepezil augments control and impaired by Abeta hippocampal LTP in NMDAR-independent manner. In general, our findings extend the understanding of mechanisms of therapeutic action of donepezil, especially at an early stage of AD, and maybe taken into account while considering the possibility of donepezil overdose.
Long-term potentiation of CA1 field potentials was induced by weak tetanic orthodromic stimulation of the Schaffer collateral/commissural fibers in isolated hippocampal slices perfused with a medium containing arginine vasopressin fragment AVP(4-9)in micromolar concentrations. It is hypothesized that AVP(4-9)affects induction of long-term potentiation at the intracellular level.
Echinacea purpurea is a widely used plant immunomodulator with a selective immunomodulatory effect depending on the dilution of the initial preparation. In low doses, it causes selective induction of pro- and anti-inflammatory cytokines. The results recommend this preparation in a wide range of concentrations for adequate correction of the immune system work aimed at restoring the Th1/Th2 balance in various diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.