The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of existing antennas. The increased uv-coverage, sensitivity, and frequency coverage allow a wide range of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched to inform the development of the ngEHT array design, science objectives, and analysis pathways. For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models and released to the challenge participants, who analyze the datasets using image reconstruction and other methods. The submitted analysis results are evaluated with quantitative metrics. In this work, we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87* and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT array in realistic observing conditions using current analysis algorithms. We identify areas where there is still room for improvement of these algorithms and analysis strategies. Other science cases and arrays will be explored in future challenges.
We performed multi-frequency studies on the gigahertz-peaked spectrum high-redshift quasar 0858−279. Initially, the source presented itself in the early VLBI images as a very peculiar resolved blob. We observed the quasar with the VLBA at 1.4−24 GHz in a dual-polarization mode. The high spatial resolution and the spectral index maps enabled us to resolve the core-jet structure and locate a weak and compact core by its inverted spectrum. The dominant jet component 20 parsecs away from the core was optically thin above 10 GHz and opaque below it. We also estimated an uncommonly strong magnetic field in the bright jet feature, which turned out to be around 1 G. The Faraday rotation measure maps revealed high RM values over 6000 rad/m2. Additionally, these maps allowed us to follow the magnetic field direction in the bright jet feature being perpendicular to the propagation direction of the jet. All the results strongly indicated the formation of a shock wave in the dominant component arising from an interaction with the surrounding matter. Using the proposed hypothesis and the core shift approach, we discovered that the magnetic field in the core region is of the order of 0.1 G.
In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87* and Sagittarius A* (Sgr A*). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies to inform the ngEHT array design and analysis algorithm development. In this work, we compare the accretion flow structure and dynamics in numerical fluid simulations that specifically target M87* and Sgr A*, and were used to construct the source models in the challenge set. We consider (1) a steady-state axisymmetric radiatively inefficient accretion flow model with a time-dependent shearing hotspot, (2) two time-dependent single fluid general relativistic magnetohydrodynamic (GRMHD) simulations from the H-AMR code, (3) a two-temperature GRMHD simulation from the BHAC code, and (4) a two-temperature radiative GRMHD simulation from the KORAL code. We find that the different models exhibit remarkably similar temporal and spatial properties, except for the electron temperature, since radiative losses substantially cool down electrons near the BH and the jet sheath, signaling the importance of radiative cooling even for slowly accreting BHs such as M87*. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.