Abstract. In cryptography it is assumed that adversaries only have black box access to the secret keys of honest parties. In real life, however, the black box approach is not sufficient because attackers have access to many physical means that enable them to derive information on the secret keys. In order to limit the attacker's ability to read out secret information, the concept of Algorithmic Tamper Proof (ATP) security is needed as put forth by Gennaro, Lysyanskaya, Malkin, Micali and Rabin. An essential component to achieve ATP security is read-proof hardware. In this paper, we develop an implementation of read-proof hardware that is resistant against invasive attacks. The construction is based on a hardware and a cryptographic part. The hardware consists of a protective coating that contains a lot of randomness. By performing measurements on the coating a fingerprint is derived. The cryptographic part consists of a Fuzzy Extractor that turns this fingerprint into a secure key. Hence no key is present in the non-volatile memory of the device. It is only constructed at the time when needed, and deleted afterwards. A practical implementation of the hardware and the cryptographic part is given. Finally, experimental evidence is given that an invasive attack on an IC equipped with this coating, reveals only a small amount of information on the key.
We have investigated with small angle light scattering and optical microscopy transient gelation phenomena which occur in phase-separating colloid-polymer mixtures. The scattering intensity distribution shows a peak at non-zero wave vector and satisfies the asymptotic q-4 Porod behaviour. Consistent with these observations, optical micrographs show an alternating pattern of dark and bright domains. These findings suggest that the polymer-induced depletion forces lead to the formation of a bicontinuous network of colloid-rich and colloid-poor domains, via a spinodal decomposition process. This bicontinuous network rapidly attains a gellike character as indicated by the arrest of speckle fluctuations. The occurrence of the gel is ascribed to polymer-induced aggregation between the colloids in the colloid-rich phase. Due to the reversible nature of the aggregation the network restructures and eventually the gel collapses, as is manifested by the rapid separation of the colloid-rich phase from the colloid-poor phase.
Mixtures of colloidal silica spheres and polydimethylsiloxane in cyclohexane with a colloid-polymer size ratio of about one were found to phase separate into two fluid phases, one which is colloid-rich and one which is colloid-poor. In this work the phase separation kinetics of this fluid-fluid phase separation is studied for different compositions of the colloid-polymer mixtures, and at several degrees of supersaturation, with small angle light scattering and with light microscopy. The small angle light scattering curve exhibits a peak that grows in intensity and that shifts to smaller wave vector with time. The characteristic length scale that is obtained from the scattering peak is of the order of a few p.m, in agreement with observations by light microscopy. The domain size increases with time as t 1/3, which might be an indication of coarsening by diffusion and coalescence, like in the case of binary liquid mixtures and polymer blends. For sufficiently low degrees of supersaturation the angular scattering intensity curves satisfy dynamical scaling behavior.
We study the structure and the time evolution of transient gels formed in colloid-polymer mixtures, by means of uorescence Confocal Scanning Laser Microscopy (CSLM). This technique is used in conjunction with novel colloidal silica particles containing a uorescent core. The confocal micrographs reveal that there exist large di erences in the local structure within a single system. At a given time there are regions where the gel structure consists of alternating patterns of colloid-rich and colloid-poor regions with a characteristic length scale and regions where the gel structure becomes disrupted by the formation of fractures. The number of fractures increases with time. It is speculated that the increase of the number of fractures leads to a weakening of the strength of the gel such that it eventually collapses under gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.