Understanding thermal gradients is essential for sustainability of built-up ecosystems, biodiversity conservation, and human health. Urbanized environments in the tropics have received little attention on underlying factors and processes governing thermal variability as compared to temperate environments, despite the worsening heat stress exposure from global warming. This study characterized near surface air temperature (NST) and land surface temperature (LST) profiles across Kenyatta University, main campus, located in the peri-urban using in situ traverse temperature measurements and satellite remote sensing methods respectively. The study sought to; (i) find out if the use of fixed and mobile temperature sensors in time-synchronized in situ traverses can yield statistically significant temperature gradients (ΔT) attributable to landscape features, (ii) find out how time of the day influences NST gradients, (iii) determine how NST clusters compare to LST values derived from analysis of ‘cloud-free’ Landsat 8 OLI (Operational Land Imager) satellite image, and (iv) determine how NST and LST values are related to biophysical properties of land cover features.. The Getis–Ord Gi* statistics of ΔT values indicate statistically significant clustering hot and cold spots, especially in the afternoon (3–5 PM). NST ‘hot spots’ and ‘cold spots’ coincide with hot and cold regions of Landsat-based LST map. Ordinary Least Square Regression (OLS) indicate statistically significant (p < 0.01) coefficients of MNDWI and NDBI explaining 15% of ΔT variation, and albedo, MNDWI, and NDBI explaining 46% of the variations in LST patterns. These findings demonstrate that under clear sky, late afternoon walking traverses records spatial variability in NST within tropical peri-urban environments during dry season. This study approach may be enhanced through collecting biophysical attributes and NST records simultaneously to improve reliability of regression models for urban thermal ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.