Let $\mathcal{F}\subseteq 2^{[m]}$ be a family of subsets of $[m]=\{1,2,\ldots,m\}$. For $S\subseteq [m]$, let $\mathcal{F}|_S$ be the trace $\mathcal{F}|_S=\{B\cap S : B\in\mathcal{F}$, considered as a multiset. We say $\mathcal{F}$ shatters a set $S\subseteq [m]$ if $\mathcal{F}|_S$ has all $2^{|S|}$ possible sets (i.e. complete). We say $\mathcal{F}$ has a shattered set of size $k$ if $\mathcal{F}$ shatters some $S\subseteq [m]$ with $|S|=k$. It is well known that if $\mathcal{F}$ has no shattered $k$-set then $|\mathcal{F}|\le\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$. We obtain the same exact bound when forbidding less. Namely, given fixed positive integers $t$ and $k$, for every set $S\subseteq [m]$ with $|S|=k$, $\mathcal{F}$ is such that $\mathcal{F}|_S$ does not have both all possible sets $2^S$ and specified additional sets occuring at least $t$. Similar results are proven for double shattering, namely when $\mathcal{F}|_S$ does not have all sets $2^|S|$ appearing twice. The paper is written in matrix notation with trace replaced by configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.