We study a nanosecond surface dielectric barrier discharge (SDBD) initiated by negative or positive polarity pulses 10-15 kV in amplitude in a cable, 25-30 ns FWHM, 5 ns rise time, in the regime of a single shot or 3 Hz repetitive frequency. Discharge parameters, namely spatial structure of the discharge and time-and space-resolved electric field are studied in a N 2 : O 2 = 4 : 1 mixture for P = 1-5 atm. The possibility of igniting a combustible mixture with the help of an SDBD is demonstrated using the example of a stoichiometric C 2 H 6 : O 2 mixture at ambient initial temperature and at 1 atm pressure. Flame propagation and ignited volume as a function of time are compared experimentally for two discharge geometries: SDBD and pin-to-pin configurations at the same shape and amplitude of the incident pulse. It is shown that the SDBD can be considered as a multi-point ignition system with maximum energy release near the high-voltage electrode. Numerical modeling of the discharge and subsequent combustion kinetics for the SDBD conditions is performed. The discharge action leads to the production of atoms and radicals as well as to fast gas heating, due to the relaxation of electronic and vibrational degrees of freedom. The calculated ignition delay time is in reasonable agreement with the experimental results.
Streamer-to-filament transition is a general feature of high pressure high voltage (HV) nanosecond surface dielectric barrier discharges. The transition was studied experimentally using time-and space-resolved optical emission in UV and visible parts of spectra. The discharge was initiated by HV pulses 20 ns in duration and 2 ns rise time, positive or negative polarity, 20-60 kV in amplitude on the HV electrode. The experiments were carried out in a single-shot regime at initial pressures P > 3 bar and ambient initial temperature in air, N 2 , H 2 :N 2 and O 2 :Ar mixtures. It was shown that the transition to filamentary mode is accompanied by the appearance of intense continuous radiation and broad atomic lines. Electron density calculated from line broadening is characterized by high absolute values and long decay in the afterglow. The possible reasons for the continuous spectra were analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.