The article presents a hybrid algorithm for the formation of the shortest trajectory for intelligent agents of a multi-agent system, based on the synthesis of methods of the reinforcement learning paradigm, the heuristic search algorithm A*, which has the functions of exchange of experience, as well as the automatic formation of subgroups of agents based on their visibility areas. The experimental evaluation of the developed algorithm was carried out by simulating the task of finding the target state in the maze in the Microsoft Unity environment. The results of the experiment showed that the use of the developed hybrid algorithm made it possible to reduce the time for solving the problem by an average of 12.7 % in comparison with analogs. The differences between the proposed new “hybrid algorithm for the formation of the shortest trajectory based on the use of multi-agent reinforcement learning, search algorithm A* and exchange of experience” from analogs are as follows: – application of the algorithm for the formation of subgroups of subordinate agents based on the “scope” of the leader agent for the implementation of a multi-level hierarchical system for managing a group of agents; – combining the principles of reinforcement learning and the search algorithm A*.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.