Abstract-Telecommunication systems integrated within garments and wearable products are such methods by which medical devices are making an impact on enhancing healthcare provisions around the clock. These garments when fully developed will be capable of alerting and demanding attention if and when required along with minimizing hospital resources and labour. Furthermore, they can play a major role in preventative ailments, health irregularities and unforeseen heart or brain disorders in apparently healthy individuals. This work presents the feasibility of investigating an Ultra-WideBand (UWB) antenna made from fully textile materials that were used for the substrate as well as the conducting parts of the designed antenna. Simulated and measured results show that the proposed antenna design meets the requirements of wide working bandwidth and provides 17 GHz bandwidth with compact size, washable and flexible materials. Results in terms of return loss, bandwidth, radiation pattern, current distribution as well as gain and efficiency are presented to validate the usefulness of the current manuscript design. The work presented here has profound implications for future studies of a standalone suite that may one day help to provide wearer (patient) with such reliable and comfortable medical monitoring techniques.
The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB) technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.
Abstract-Communication technology is increasingly pervading everyday life. The rapid progress in wireless communication besides the increasing interest in wearable antennas and electronics in civil, medical, sport wear and military domains promises to replace wiredcommunication networks in the near future in which antennas are in more important role. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, Ultra-Wideband (UWB) technology and textile technology. All these together have resulted in demand for flexible fabric antennas, which can be easily attached to a piece of clothing. In this paper, three different structures of UWB antennas using clothing materials and suitable for wearable application were fabricated and presented. The substrate of the designed antennas was made from jeans textile material, while radiating element and ground plane are made out of copper tape. The operating frequency of all three designs is between 3 GHz and 12 GHz. Measured results are compared with simulations and good agreement was observed.
Abstract-A multiband Fractal Koch dipole textile antenna is proposed for wearable applications. The antenna is designed to operate at 0.9 GHz, 2.45 GHz and 5.8 GHz. Denim materials as the substrate are selected aiming to obtain robustness, flexibility and a lightweight textile antenna. The antenna model is designed, simulated, optimized and analyzed using Microwave Studio CST software. Two types of multiband antenna prototypes are fabricated and evaluated with different conducting elements (Shield It fabric and copper foil tape). Antenna performance is observed in terms of return loss, bandwidth, radiation pattern and realized gain. Three different comprehensive analyses are taken into consideration: measurement antenna with different bending sizes, on-body measurement and under wet conditions. The antenna performances are evaluated based on resonant frequency (f o ) and bandwidth (BW). The antennas performance with bending on the human body (arm & forearm) is compared and investigated. A suitable placement on the body has been discovered between the chest and backside. The antennas have also been tested under wet conditions to ensure a stable characteristic under the influence of water.
A flexible meander bowtie antenna incorporated with dipole-like artificial magnetic conductor (AMC) is proposed. Two different types of AMC design are presented for comparison. A new medical transdermal patch is used as the dielectric substrate for both antenna and AMC. The gain enhancement is achieved using a modified dipole-like unit cell of the AMC. The effect of the substrate thickness and separation distance between the antenna and the AMC is investigated. The results show that the antenna is operating at its original frequency (as in free space) when the antenna-AMC separation distance is more than one-eighth of the wavelength. The directive radiation pattern with high gain is obtained when the flexible antenna is placed above the AMC structure. The AMC increases the antenna's gain by 4.15 and 4.931 dB for single-dipole AMC and double-dipole AMC, respectively. The 10 g specific absorption rate is reduced by 98% and 68% for both simulated and measured results, respectively. The results demonstrate that the proposed flexible antenna-AMC is suitable for on-body application specifically for continuous health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.