Marine acoustic data are used to map and characterize submarine slope failure along the accretionary prism of Cascadia. Two main styles of slope failure are identified: (1) failures with curved head scarps, which are predominantly associated with incoherent debris-flow deposits; and (2) failures with rectangular head scarps, which are predominantly associated with intact sediment blocks. Rectangular head scarps mostly occur on thrust ridges with slope angles <16° and ridge heights <650 m, whereas curved head scarps occur predominantly on steeper and higher ridges. Off Vancouver Island, failure style and head-scarp geometry also change with ridge azimuth. We propose that the curved head scarps and debris flows may be a result of higher kinetic forcing of the downsliding sediments and a higher degree of mixing. At the more gently sloped, less elevated ridges, the kinetic forcing may be smaller, which leads to intact failure masses. Extensional faults at ridges with curved scarps may result from oversteepening and collapse of the sediments that cannot withstand their own weight due to limited internal shear strength. The slide geometries and potential controls on failure style may inform subsequent studies in assessing the risks for tsunami generation from submarine slope failures along the Cascadia margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.