Abstract. A recent development in low-cost technology such as Unmanned Aerial Vehicle (UAV) offers an easy method for collecting geospatial data. UAV plays an important role in land resource surveying, urban planning, environmental protection, pollution monitoring, disaster monitoring and other applications. It is a highly adaptable technology that is continuously changing in innovative ways to provide greater utility. Thus, this study aimed to evaluate the capability of UAV-based hyperspectral data for urban area mapping. In order to do the mapping, Artificial Neural Network (ANN), Support Vector Machine (SVM), Maximum Likelihood (ML) and Spectral Angle Mapper (SAM) were used to classify the urban area. The classifications involved seven classes: concrete, aluminium, flexible pavement, clay tile, interlocking block, tree and grass. Then, the overall accuracies obtained from ANN, SVM, ML and SAM for 0.3 m spatial resolution images were 92.33%, 85.86%, 83.41% and 46.55% with the kappa coefficient of 0.91, 0.83, 0.80 and 0.38 respectively. Thus, the classification results showed that the powerful and intelligent ANN algorithm produced the highest accuracy compared to the other three algorithms. Overall, mapping of urban area using UAV-based hyperspectral data and advanced algorithms could be the way forward in producing updated urban area maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.