This paper examines the combined action of cardiac fiber curvature and transmural fiber rotation in polarizing the myocardium under the conditions of a strong electrical shock. The study utilizes a three-dimensional finite element model and the continuous bidomain representation of cardiac tissue to model steady-state polarization resulting from a defibrillation-strength uniform applied field. Fiber architecture is incorporated in the model via the shape of the heart, an ellipsoid of variable ellipticity index, and via an analytical function, linear or nonlinear, describing the transmural fiber rotation. Analytical estimates and numerical results are provided for the location and shape of the "bulk" polarization (polarization away from the tissue boundaries) as a function of the fiber field, or more specifically, of the conductivity changes in axial and radial direction with respect to the applied electrical field lines. Polarization in the tissue "bulk" is shown to exist only under the condition of unequal anisotropy ratios in the extra- and intracellular spaces. Variations in heart geometry and, thus, fiber curvature, are found to lead to change in location of the zones of significant membrane polarization. The transmural fiber rotation function modulates the transmembrane potential profile in the radial direction. A higher gradient of the transmural transmembrane potential is observed in the presence of fiber rotation as compared to the no rotation case. The analysis presented here is a step forward in understanding the interaction between tissue structure and applied electric field in establishing the pattern of membrane polarization during the initial phase of the defibrillation shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.