We report an unexpected nonphotothermal material organization induced by continuous-wave visible laser light at low power levels. This effect is observed along the laser beam propagation direction in fully transparent entangled solutions of common homopolymers featuring sufficiently high molecular mass and optical anisotropy along the chain backbone. The resulting formation of long-lived stringlike or dotlike patterns on the micrometer scale, probed by dark-field coherent imaging, depends on the molecular mass, architecture, solvent nature, and polymer concentration. Electrostrictive and alignment forces as well as chain cooperativity are responsible for the osmotic compression of the polymer solute. Subsequent waveguiding effects induce autoamplification and "pattern writing" upon prolonged illumination. This wave-medium coupling could potentially lead to photorefractive, microoptics, and nanotechnology applications.
A long-period fiber grating (LPFG) humidity sensor is reported utilizing poly(ethylene oxide)/cobalt chloride (PEO/CoCl2) as a hybrid hygrosensitive cladding coating. A thin overlay of the material is deposited on the LPFG and with exposure to different ambient humidity levels, its spectral properties are modified. The material parameters associated with the sensing mechanism may include those of refractive index, absorption, and morphological alterations of the overlaid material. Relative humidity variations in the range from 50% to 95% have been detected with a resolution better than 0.2%. The response time constant of the fiber sensor is of the order of a few hundred milliseconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.