Obesity is a well-known risk factor for the development of type 2 diabetes mellitus and cardiovascular disease. Importantly, obesity is not only associated with lipid accumulation in adipose tissue, but also in non-adipose tissues. The latter is also known as ectopic lipid accumulation and may be a possible link between obesity and its comorbidities such as insulin resistance, type 2 diabetes mellitus and cardiovascular disease. In skeletal muscle and liver, lipid accumulation has been associated with the development of insulin resistance, an early hallmark of developing type 2 diabetes mellitus. More specifically, accumulation of intermediates of lipid metabolism, such as diacylglycerol (DAG) and Acyl-CoA have been shown to interfere with insulin signaling in these tissues. Initially, muscular and hepatic insulin resistance can be overcome by an increased insulin production by the pancreas, resulting in hyperinsulinemia. However, during the progression towards overt type 2 diabetes, pancreatic failure occurs resulting in reduced insulin production. Interestingly, also in the pancreas lipid accumulation has been shown to precede dysfunction. Finally, accumulation of fat in the heart has been associated with cardiac dysfunction and heart failure, which may be an explanation for diabetic cardiomyopathy. Taken together, we conclude that evidence for deleterious effects of lipid accumulation in non-adipose tissue (lipotoxicity) is strong. However, while ample human data is available for skeletal muscle and the liver, future research should focus on lipid accumulation in the pancreas and the heart.
OBJECTIVEType 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function.RESEARCH DESIGN AND METHODSWhile in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry.RESULTSIndeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density.CONCLUSIONSThese findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible causes for the observed reduction in mitochondrial capacity.
A 3-wk high-fat diet leads to IHL accumulation and a decreased metabolic flexibility, but insulin sensitivity is unaffected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.