Aiming to improve the position and velocity precision of the INS/GNSS system during GNSS outages, a novel system that combines unscented Kalman filter (UKF) and nonlinear autoregressive neural networks with external inputs (NARX) is proposed. The NARX‐based module is utilized to predict the measurement updates of UKF during GNSS outages. A new offline approach for selecting the optimal inputs of NARX networks is suggested and tested. This approach is based on mutual information (MI) theory for identifying the inputs that influence each of the outputs (the measurement updates of UKF) and lag‐space estimation (LSE) for investigating the dependency of these outputs on the past values of the inputs and the outputs. The performance of the proposed system is verified experimentally using a real dataset. The comparison results indicate that the NARX‐aided UKF outperforms other methods that use different input configurations for neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.