Individual micro calcifications are difficult to be detected as they are variable in shape and size and may be embedded in areas of dense parenchymal tissues. One of the most important problems of medical diagnosis, in general, is the subjectivity of the pattern recognition by diagnosis experts. This is due to the fact that the results are depended on the interpretation of the input from the patients but not on systematic procedure. In this paper, an adaptive neuro-fuzzy model optimized by PSO algorithms has been proposed. The symptoms and signs are gathered and the fuzzy membership values are defined. Feed forward multilayer networks are used to accept the fuzzy input values and is trained using back-propagation algorithm. The system is tested for detecting the micro-calcifications in breast sonograms. Later the results are compared for its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.