Protoheme rebinding of carbon monoxide after photodissociation has been observed at temperatures from 5 to 340 K for times from 2 μs to 1 ks. Below 80 K, binding is nonexponential in time and CO-concentration independent, above 230 K exponential and the rate is CO-concentration proportional. A model is proposed in which the carbon monoxide, moving from the solvent to the binding site at the ferrous heme iron, encounters two successive barriers. The outer is formed by the solvent, the inner is a property of the heme and probably connected to the motion of the iron from the spin-2 deoxy to the spin-0 carbon monoxide state. The temperature dependence of the two processes yields all activation enthalpies and entropies for the two barriers. The nonexponential rebinding observed at low temperatures implies that the inner barrier possesses distributed activation enthalpy and entropy. The enthalpy spectrum and the entropy spread are determined. The spectrum demonstrates that heme exists in many different conformational states. At low temperatures, these states are frozen; above about 230 K, rapid conformational relaxation renders rebinding exponential. Below 15 K, quantum-mechanical molecular tunneling dominates. The tunneling rate yields the width of the innermost barrier. Earlier experiments on carbon monoxide binding to myoglobin had provided evidence for four barriers. The present results imply that the innermost barrier in myoglobin is caused by the heme, the outermost by the solvent, and the two intermediate ones by the globin.
Binding of carbon monoxide to the separated alpha and beta chains of hemoglobin, with and without bound p-mercuribenzoate, has been measured at temperatures from 5 to 340 K for times 2 mus to 1 ks using flash photolysis. All four proteins exhibit three different rebinding processes. The data are interpreted by a model in which the carbon monoxide, moving from the solvent to the binding site at the ferrous heme iron, encounters three barriers. The temperature dependences of the three processes yield activation enthalpies and entropies for the three barriers for all four proteins. Binding at temperatures below about 200 K is nonexponential, implying that the innermost barrier has a distribution of activation enthalpies. The distributions for the four proteins have been determined. At temperatures below 30 K, the CO binding rates approach finite low-temperature limits; binding thus proceeds by quantum-mechanical tunneling. Invoking a simple model, the widths of the innermost barriers are extracted from the measured tunneling rates. The experimental parameters are correlated with structural features of the hemoglobin chains and compared with previously published data on myoglobin and protoheme. A correlation is established between the height of the innermost barrier and the equilibrium CO pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.