In this work artificial neural network (ANN) models are developed to estimate meteorological data values in areas with sparse meteorological stations. A more traditional interpolation model (multiple regression model, MLR) is also used to compare model results and performance. The application site is a canyon in a National Forest located in southern Greece. Four meteorological stations were established in the canyon; the models were then applied to estimate air temperature values as a function of the corresponding values of one or more reference stations. The evaluation of the ANN model results showed that fair to very good air temperature estimations may be achieved depending on the number of the meteorological stations used as reference stations. In addition, the ANN model was found to have better performance than the MLR model: mean absolute error values were found to be in the range 0.82-1.72 degrees C and 0.90-1.81 degrees C, for the ANN and the MLR models, respectively. These results indicate that ANN models may provide advantages over more traditional models or methods for temperature and other data estimations in areas where meteorological stations are sparse; they may be adopted, therefore, as an important component in various environmental modeling and management studies.
An artificial neural network (ANN) model-based approach was developed and applied to estimate values of air temperature and relative humidity in remote mountainous areas. The application site was the mountainous area of the Samaria National Forest canyon (Greece). Seven meteorological stations were established in the area and ANNs were developed to predict air temperature and relative humidity for the five most remote stations of the area using data only from two stations located in the two more easily accessed sites. Measured and model-estimated data were compared in terms of the determination coefficient (R 2 ), the mean absolute error (MAE) and residuals normality. Results showed that R 2 values range from 0.7 to 0.9 for air temperature and from 0.7 to 0.8 for relative humidity whereas MAE values range from 0.9 to 1.8 o C and 5 to 9%, for air temperature and relative humidity, respectively. In conclusion, the study demonstrated that ANNs, when adequately trained, could have a high applicability in estimating meteorological data values in remote mountainous areas with sparse network of meteorological stations, based on a series of relatively limited number of data values from nearby and easily accessed meteorological stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.