The design of solar concentrating collectors for the effective utilization of solar energy is a challenging condition due to tracking errors leading to different divergences of the solar incidence angle. To enhance the optical performance of solar parabolic trough collectors (SPTC) under a diverged solar incidence angle, an additional compound parabolic concentrator (CPC) is introduced as a secondary reflector. SPTC with CPC is designed and modeled for a single axis-tracking concentrating collector based on the local ambient conditions. In this work, the optical performance of the novel SPTC system with and without a secondary reflector is investigated using MATLAB and TRACEPRO software simulations for various tracking errors. The significance parameters such as the solar incidence angle, aperture length, receiver tube diameter, rim angle, concentration ratio, solar radiation, and absorbed flux are analyzed. The simulation results show that the rate of the absorbed flux on the receiver tube is significantly improved by providing the secondary reflector, which enhances the optical efficiency of the collector. It is found that the optical efficiency of the SPTC with a secondary reflector is 20% higher than the conventional collector system for a solar incidence angle of 2°. This work can effectively direct the choice of optimal secondary reflectors for SPTC under different design and operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.