Likelihood ratios (LRs) are used to characterize the efficiency of diagnostic tests. In this paper, we use the classical weighted least squares (CWLS) test procedure, which was originally used for testing the homogeneity of relative risks, for comparing the LRs of two or more binary diagnostic tests. We compare the performance of this method with the relative diagnostic likelihood ratio (rDLR) method and the diagnostic likelihood ratio regression (DLRReg) approach in terms of size and power, and we observe that the performances of CWLS and rDLR are the same when used to compare two diagnostic tests, while DLRReg method has higher type I error rates and powers. We also examine the performances of the CWLS and DLRReg methods for comparing three diagnostic tests in various sample size and prevalence combinations. On the basis of Monte Carlo simulations, we conclude that all of the tests are generally conservative and have low power, especially in settings of small sample size and low prevalence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.